Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5808–5812 | Cite as

The gravitational effects on low solid-volume fraction liquid-phase sintering

  • D. F. Heaney
  • R. M. German
  • In Shup Ahn
Papers

Abstract

The gravity effects on liquid-phase sintering (LPS) were experimentally examined by varying the solid- and liquid-phase density difference from 0–9 g cm−3. The overall solid-volume fraction was held at 0.30 to allow free settling of solid grains in the liquid matrix. The solid grains were found to settle and pack to form a solid skeleton with a volume fraction of solid that reflects the density difference.

Keywords

Polymer Settling Material Processing Density Difference Gravity Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. C. Hardy and P. W. Voorhees, Metall. Trans. 19A (1988) 2713.CrossRefGoogle Scholar
  2. 2.
    C. M. Kipphut, R. M. German, A. Bose and T. Kishi, “Advances in Powder Metallurgy”, Vol. 2, in Proceedings of the 1989 Powder Metallurgy Conference and Exhibition, edited by T. G. Gasbarre and W. F. Jandeska (Metal Powder Industries Federation, Princeton, NJ, 1989) p. 415.Google Scholar
  3. 3.
    C. M. Kipphut, T. Kishi, A. Bose and R. M. German, “Progress in Powder Metallurgy”, Vol. 43, in Proceedings of the 1987 Annual Powder Metallurgy Conference, edited by C. L. Freeby and H. Hjort (Metal Powder Industries Federation, Princeton, NJ, 1987) p. 93.Google Scholar
  4. 4.
    S. C. Yang and R. M. German, Metall. Trans. 22A (1991) 786.CrossRefGoogle Scholar
  5. 5.
    C. M. Kipphut, A. Bose, S. Farooq and R. M. German, ibid. 19A (1988) 1905.CrossRefGoogle Scholar
  6. 6.
    A. N. Niemi and T. H. Courtney, Acta Metall. 31 (1983) 1393.CrossRefGoogle Scholar
  7. 7.
    S. S. Kang and D. N. Yoon, Metall. Trans. 13A (1982) 1405.CrossRefGoogle Scholar
  8. 8.
    Z. Fang and B. R. Patterson, “Modern Developments in Powder Metallurgy”, Vol. 18, in Proceedings of the 1988 International Powder Metallurgy Conference, edited by P. U. Gummeson and D. A. Gustafson (Metal Powder Industries Federation, Princeton, NJ, 1988) p. 615.Google Scholar
  9. 9.
    D. F. Heaney, Master's Thesis, (Pennsylvania State University, University Park, PA, (1993) pp. 16–18.Google Scholar
  10. 10.
    R. M. German, in “Particle packing characteristics” (MPIF, Princeton, NJ, 1989) p. 59.Google Scholar
  11. 11.
    L. B. Ekbom and A. Eliasson, “Modern Developments in Powder Metallurgy”, Vol. 19, in Proceedings of the 1988 International Powder Metallurgy Conference, edited by P. U. Ummeson and D. A. Gustafson (Metal Powder Industries Federation, Princeton, NJ, 1988) p. 63.Google Scholar
  12. 12.
    L. B. Ekbom, Int. J. Refract. Met. Hard Mater. 6 (1987) 231.Google Scholar
  13. 13.
    L. B. Ekbom and A. Eliasson, Adv. Space Res. 8 (1988) 315.CrossRefGoogle Scholar
  14. 14.
    L. B. Ekbom, H. Fredrilsson and A. Eliasson, High. Temp. High Press. 21 (1989) 507.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • D. F. Heaney
    • 1
  • R. M. German
    • 1
  • In Shup Ahn
    • 2
  1. 1.P/M Lab, 118 Research WestThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Gyeong Sang National UniversityChinjuKorea

Personalised recommendations