Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5799–5807 | Cite as

The effect of nitrogen on the structure and mobility of dislocations in Fe-Ni-Cr austenite

  • M. Grujicic
Papers

Abstract

The structure and the critical resolved shear stress for the motion of the straight a/2〈110〉 edge and screw dislocations in Fe-Ni-Cr and Fe-Ni-Cr-N austenite have been analysed using the conjugate gradient method to minimize the potential energy of the crystal and the embedded atom method to quantify atomic interactions at 0 K. In Fe-Ni-Cr austenite both the edge and the screw dislocations dissociate along one of the {111} planes forming a stacking-fault ribbon. The ribbon widths are comparable to their values calculated using continuum theory. Dissociated edge and screw dislocations require very similar levels of shear stress for their motion. In Fe-Ni-Cr-N austenite, the structure of the dislocation core of the a/2〈110〉 edge dislocation does not seem to be significantly affected by the presence of nitrogen. In sharp contrast, the core structure of the dissociated a/2〈110〉 dislocation undergoes a major change, resulting in spreading of the core on to two or more non-parallel planes. As a result, a significantly higher level of stress is required for the motion of a screw than an edge dislocation. Under certain conditions the interaction of nitrogen atoms with screw dislocations can result in pinning of the dislocations. The potential mechanism for the motion of the pinned screw dislocations by formation and motion of edge-type kinks is briefly discussed.

Keywords

Shear Stress Austenite Potential Energy Nitrogen Atom Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. G. Byrnes, M. Grujicic and W. S. Owen, Acta Metall. 35 (1987) 1853.CrossRefGoogle Scholar
  2. 2.
    J. Sassen, A. J. Garratt-Reed and W. S. Owen, in “High nitrogen steels, HNS88” (Institute of Metals, London, 1989) p. 1959.Google Scholar
  3. 3.
    M. Grujicic, J. C. Nilsson, W. S. Owen and T. Thorvaldsson, ibid.“ p. 151.Google Scholar
  4. 4.
    M. S. Duesbery, V. Vitek and D. K. Bowen, Proc. R. Soc. A332 (1973) 85.CrossRefGoogle Scholar
  5. 5.
    V. Vitek, R. C. Perrin and D. K. Bowen, Philos. Mag. 21 (1970) 1049.CrossRefGoogle Scholar
  6. 6.
    Z. S. Basinski, M. S. Duesbery and R. Taylor, Can. J. Phys. 49 (1971) 2160.CrossRefGoogle Scholar
  7. 7.
    M. Grujicic, Mater. Sci. Eng. A183 (1994) 223.CrossRefGoogle Scholar
  8. 8.
    R. Fletcher and C. M. Reeves, Computer J. 7 (1964) 149.CrossRefGoogle Scholar
  9. 9.
    M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50 (1983) 1285.CrossRefGoogle Scholar
  10. 10.
    Idem, Phys. Rev. B29 (1984) 6443.CrossRefGoogle Scholar
  11. 11.
    M. Grujicic and X. W. Zhou, Calphad 17 (1993) 383.CrossRefGoogle Scholar
  12. 12.
    E. Clementi and C. Roetti, “Atomic data and nuclear data tables”, Vol. 4, nos 3 and 4 (Academic, New York, 1974).Google Scholar
  13. 13.
    R. W. Smith and G. S. Was, Phys. Rev. B40 (1989) 10322.CrossRefGoogle Scholar
  14. 14.
    M. Grujicic and X. W. Zhou, Calphad 17 (1993) 383.CrossRefGoogle Scholar
  15. 15.
    A. Seeger, Philos. Mag. 46 (1955) 1194.CrossRefGoogle Scholar
  16. 16.
    H. M. Ledbetter, M. W. Austin and S. A. Kim, Mater. Sci. Eng. 85 (1982) 231.Google Scholar
  17. 17.
    R. Sandstrom and H. Bergquist, Scan. J. Metal. 6 (1977) 156.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Grujicic
    • 1
  1. 1.Center for Advanced Manufacturing, Department of Mechanical EngineeringClemson UniversityClemsonUSA

Personalised recommendations