Journal of Materials Science

, Volume 30, Issue 22, pp 5784–5788 | Cite as

Effect of Gd3+ substitution on dielectric behaviour of copper-cadmium ferrites

  • C. B. Kolekar
  • P. N. Kamble
  • S. G. Kulkarni
  • A. S. Vaingankar


The dielectric constant, ε′, loss tangent (tan δ) and a.c. resistivity (ρa.c.) are measured in the frequency range of 100 Hz to 5 MHz for the series of samples Cdx Cu1−xFe2−yGdyO4 prepared by the ceramic technique. The dispersion in ε′ for all the values of x and y=0 and 0.1 shows a normal behaviour except for y=0.1 and x=0.4. The lowering of dielectric intensity in substituted ferrites (y=0.1) and fast dispersion of (ρa.c.) with frequency, are explained as due to the reduced number of Fe3+ participating in the polarization process and the hindrances caused by Gd3+ to the polarization process by localizing Fe2+ ions thereby increasing the resistivity and activation energy. The dispersion in tan δ for unsubstituted samples (y=0.0) shows a normal trend while substituted samples (y=0.1) show relaxation behaviour, which is explained by existing theories.


Polymer Activation Energy Ferrite Dielectric Constant Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Rezlescu, Phys. Stat. Sol. 17 (1973) K139.CrossRefGoogle Scholar
  2. 2.
    V. R. Kulkarni and A. S. Vaingankar, J. Mater. Sci. 22 (1987) 4087.CrossRefGoogle Scholar
  3. 3.
    O. S. Josyulu and J. So Bhanadri, ibid. 59 (1980) 323.Google Scholar
  4. 4.
    R. S. Patil, S. V. Kakatkar, S. A. Patil, P. K. Maskar and S. R. Sawant, Phys. Stat. Sol. 126 (1991) K185.CrossRefGoogle Scholar
  5. 5.
    K. Iwauchi, Jpn. J. Appl. Phys. 10 (1971) 1520.CrossRefGoogle Scholar
  6. 6.
    S. S. Suryavanshi, R. S. Patil, S. A. Patil and S. R. Sawant, J. Less Common. Met. 168 (1991) 169.CrossRefGoogle Scholar
  7. 7.
    V. R. Kulkarni, M. M. Todkar and A. S. Vaingankar, Indian J. Pure Appl. Phys. 24 (1986) 294.Google Scholar
  8. 8.
    N. Rezlescu and E. Rezlescu, Phys. Stat. Sol. (a) 23 (1974) 575.CrossRefGoogle Scholar
  9. 9.
    Longwu, Tien-Shou Wu and Chaunh-Chaung Wei, J. Phys. D Appl. Phys. 13 (1980) 259.CrossRefGoogle Scholar
  10. 10.
    S. A. Patil, M. K. Soudagar, B. L. Patil and S. R. Sawant, Solid State Commun. 78 (1991) 39.CrossRefGoogle Scholar
  11. 11.
    K. P. Bellow, L. A. Antoshina and A. S. Markosyan, Sov. Phys. Solid State (USA) 25 (1983) 1609.Google Scholar
  12. 12.
    ASTM, 15-196, Iron-oxide Gadolinium (GdFeO3).Google Scholar
  13. 13.
    J. Hankiewicz, Z. Pajak and J. Radomski, J. Magn. Magn. Mater. 83 (1990) 475.CrossRefGoogle Scholar
  14. 14.
    H. Pascard, A. Globus and V. Cabon, J. Phys (Paris) Colloq. 38 C1(1977) 163.CrossRefGoogle Scholar
  15. 15.
    C. G. Koops, Phys. Rev. 83 (1951) 121.CrossRefGoogle Scholar
  16. 16.
    J. C. Maxwell, “Electricity and magnetism”, Vol. 1, (Oxford University Press, Oxford, 1954).Google Scholar
  17. 17.
    K. W. Wagner, Ann. Phys (Leipzig) 40 (1913) 817.CrossRefGoogle Scholar
  18. 18.
    C. B. Kolekar, P. N. Kamble and A. S. Vaingankar, J. Magn. Magn. Mater. (1993) (communicated).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. B. Kolekar
    • 1
  • P. N. Kamble
    • 1
  • S. G. Kulkarni
    • 1
  • A. S. Vaingankar
    • 1
  1. 1.Post-Graduate Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations