Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5716–5722 | Cite as

Influence of residual stresses and interfacial shear strength on matrix properties in fibre-reinforced ceramic matrix composites

  • S. Kumaria
  • R. N. Singh
Papers
  • 53 Downloads

Abstract

Zircon matrix composites, uniaxially reinforced with a variety of SiC fibres were fabricated in order to create composites with different interfacial properties. Interfacial properties were varied by changing the nature of fibre coatings. The effect of changes in interfacial shear strength on important matrix properties, such as hardness and fracture toughness, was studied on a micro-scale using the microindentation technique. In addition, the relative orientation of the indented cracks with respect to the fibres was varied to investigate the existence of anisotropic behaviour of the matrix. The results indicated that the crack growth in the matrix was influenced by the presence of residual radial and axial stresses, such that relatively higher crack lengths were seen in certain directions in the matrix with respect to other directions. This asymmetric nature of the crack formation upon indentation was the reason for the observed anisotropic fracture toughness of the matrix. The residual stresses also led to anisotropic hardness and a critical load for crack initiation in the matrix.

Keywords

Residual Stress Fracture Toughness Crack Initiation Anisotropic Fracture Matrix Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Evans, Mater. Sci. Eng. A107 (1989) 227.CrossRefGoogle Scholar
  2. 2.
    A. G. Evans, F. W. Zok and J. Davis, Compos. Sci. Technol. 42 (1991) 3.CrossRefGoogle Scholar
  3. 3.
    R. J. Kerans, R. S. Hay, N. J. Pagano and T. A. Parthasarathy, Ceram. Bull. 68 (1989) 429.Google Scholar
  4. 4.
    J. Lankford, J. Mater. Sci. Lett. 1 (1982) 493.CrossRefGoogle Scholar
  5. 5.
    K. Nihara, ibid. 2 (1983) 221.CrossRefGoogle Scholar
  6. 6.
    C. B. Ponton and R. D. Rawlings, Mater. Sci. Technol. 5 (1989) 961.CrossRefGoogle Scholar
  7. 7.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Sco. 64 (1981) 533.CrossRefGoogle Scholar
  8. 8.
    K. M. Liang, G. Orange and G. Fantozzi, J. Mater. Sci. 25 (1990) 207.CrossRefGoogle Scholar
  9. 9.
    A. G. Evans, “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, PA 1979) pp. 112–35.CrossRefGoogle Scholar
  10. 10.
    Hj. Matzke, Key Eng. Mater. 56–57 (1991) 365.CrossRefGoogle Scholar
  11. 11.
    M. Hirano and H. Inada, J. Mater. Sci. 27 (1992) 3511.CrossRefGoogle Scholar
  12. 12.
    G. Babini, A. Bellosi and C. Galassi, ibid. 22 (1987) 1687.CrossRefGoogle Scholar
  13. 13.
    R. Berriche, R. T. Holt, S. N. Kumar and T. M. Maccagno, Ceram. Eng. Sci. Proc. 13 (1992) 966.Google Scholar
  14. 14.
    A. K. Mukhopadhyay, S. K. Datta and D. Chakraborty, Ceram. Int. 17 (1991) 121.CrossRefGoogle Scholar
  15. 15.
    D. K. Shetty, I. G. Wright, P. N. Mincer and A. H. Clauer, J. Mater. Sci. 20 (1985) 1873.CrossRefGoogle Scholar
  16. 16.
    T. Hansson, R. Warren and J. Wasen, J. Am. Ceram. Soc. 76 (1993) 841.CrossRefGoogle Scholar
  17. 17.
    K. Breder, K. Zeng and D. J. Rowcliffe, Ceram. Eng. Sci. Proc. 10 (1989) 1005.CrossRefGoogle Scholar
  18. 18.
    P. F. Becher and G. C. Wei, Commun. Am. Ceram. Soc. 67 (1984) C267.CrossRefGoogle Scholar
  19. 19.
    J. Wang, M. R. Piramoon, C. B. Ponton and P. M. Marquis, Br. Ceram. Trans. 90(4) (1991) 105.Google Scholar
  20. 20.
    K. L. Powell, J. A. Yeomans and P. A. Smith, ibid. 92(1) (1993) 23.Google Scholar
  21. 21.
    R. N. Singh, J. Mater. Sci. 26 (1991) 1839.CrossRefGoogle Scholar
  22. 22.
    S. K. Reddy and R. N. Singh, “Ceramic Transactions”, Vol. 38, “Advances in Ceramics-Matrix Composites”, edited by N. P. Bansal (American Ceramic Society, Westerville, OH, 1993) pp. 211–22.Google Scholar
  23. 23.
    H. E. Boyer (ed.) “Hardness Testing”, (ASM International, Metals Park, OH, 1990) Ch. 4.Google Scholar
  24. 24.
    B. Budiansky, J. W. Hutchinson and A. G. Evans, J. Mech. Phys. Solids 34 (1986) 167.CrossRefGoogle Scholar
  25. 25.
    Y. Mikata and M. Taya, J. Compos. Mater. 19 (1985) 554.CrossRefGoogle Scholar
  26. 26.
    M. Kuntz, B. Meier and G. Grathwohl, J. Am. Ceram. Soc. 76 (1993) 2607.CrossRefGoogle Scholar
  27. 27.
    C. M. Warwick and T. W. Clyne, J. Mater. Sci. 26 (1991) 3817.CrossRefGoogle Scholar
  28. 28.
    J. X. Li, Y. Matsuo and S. Kimura, J. Ceram. Soc. Jpn 100 (1992) 502.CrossRefGoogle Scholar
  29. 29.
    S. K. Reddy, S. Kumar and R. N. Singh, J. Am. Ceram. Soc. 77 (1994) 3221.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. Kumaria
    • 1
  • R. N. Singh
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations