Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5711–5715 | Cite as

Effects of Cu on the crystallization behaviour of amorphous Fe71Cr15Mo4B10

  • R. G. Vardiman
  • J. D. Ayers
  • H. N. Jones
Papers

Abstract

Following the approach of earlier studies which have demonstrated that nanocrystalline microstructures can be produced in soft magnetic alloys through the addition of one percent of Cu to Fe based amorphous precursor alloys, it is demonstrated that substantial grain refinement can be produced in alloys of interest for structural applications. Grain sizes of approximately 50 nm were produced in the alloy Fe70Cr15Mo4B10Cu1. Such grain sizes should permit superplastic consolidation of powder or flake at reasonable rates with moderate die pressures at temperatures in the vicinity of 650 °C.

Keywords

Polymer Grain Size Microstructure Crystallization Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yoshizawa, S. Oguma and K. Yamauchi, J. Appl. Phys. 64 (1988) 6044.CrossRefGoogle Scholar
  2. 2.
    T. Masumoto, A. Inoue, Y. Harakawa, M. Oguchi and N. Yano, Japanese Patent No. 61-41733 (1986) (in Japanese).Google Scholar
  3. 3.
    Y. Yoshizawa and K. Yamauchi, Mater. Trans., JIM 31 (1990) 307.CrossRefGoogle Scholar
  4. 4.
    Y. Yoshizawa and K. Yamauchi, Mater. Sci. Eng., A113 (1991) 176.CrossRefGoogle Scholar
  5. 5.
    K. Suzuki, M. Kikuchi, A. Makino, A. Inoue, and T. Masumoto, Mater. Trans., JIM 31 (1991) 961.CrossRefGoogle Scholar
  6. 6.
    K. Hono, Aj.-L. Li, Y. Ueki, A. Inoue, and T. Sakurai, Appl. Surf. Sci. 67 (1993) 398.CrossRefGoogle Scholar
  7. 7.
    J. D. Ayers, V. G. Harris, J. A. Sprague, and W. T. Elam, Appl. Phys. Lett. 64 (1994) 974.CrossRefGoogle Scholar
  8. 8.
    O. D. Sherby and J. Wadsworth, Prog. Mater. Sci. 33 (1989) 169.CrossRefGoogle Scholar
  9. 9.
    R. Ray, J. Mater. Sci. Lett. 16 (1981) 2924, 2927.CrossRefGoogle Scholar
  10. 10.
    Metals Handbook, vol. 8, (ASM, Metals Park, OH, 1973) p. 421.Google Scholar
  11. 11.
    M. L. Borlera and G. Pradelli, Metal. Ital. 65 (1973) 421.Google Scholar
  12. 12.
    H. Haschke, H. Nowotny, and P. Benesovsky, Monat. Chem. 97 (1966) 1459.CrossRefGoogle Scholar
  13. 13.
    E. I. Gladyshevskii, T. F. Federov, Yu. B. Kuz'ma and R. V. Skolozdra, Poroshpovaya Metallurgiya, Eng. Trans. 55 (1966) 305.Google Scholar
  14. 14.
    Yu. B. Kuz'ma, V. S. Telegus and D. A. Kovalyk, ibid. 77 (1969) 403.Google Scholar
  15. 15.
    Y. Kahn, E. Kneller and M. Sostarich, Z. Metallkde. 73 (1982) 624.Google Scholar
  16. 16.
    J. L. Walter, S. F. Bartram and R. R. Russell, Met. Trans. 9A (1978) 803.CrossRefGoogle Scholar
  17. 17.
    S. Budurov, T. Spassov, G. Stephani, S. Roth and M. Reibold, Mat. Sci. Eng. 97 (1988) 361.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. G. Vardiman
    • 1
  • J. D. Ayers
    • 1
  • H. N. Jones
    • 1
  1. 1.Physical Metallurgy Branch, Code 6321Naval Research LaboratoryWashington, DCUSA

Personalised recommendations