Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5705–5710 | Cite as

Properties of Er3+-doped phosphate glasses and glass fibres and efficient infrared to visible upconversion

  • Ya -Lin Lu
  • Nai -Ben Ming
Papers

Abstract

Some thermomechanical properties such as expansion, transition temperature and high-temperature viscosity of phosphate glasses with different P2O5 and BaO compositions have been measured. Absorption and fluorescence spectra of the phosphate glasses with different Er3+ doping have also been measured. The Er3+ doping concentration with respect to the maximal fluorescence intensity is 0.75 mol %. The attenuation of the fibre at a wavelength of 1.53 μm is 12.8 db m−1. Upconversion of 1.064 μm Nd∶YAG laser pulses into intense green 547 and 667 nm light in the 0.75 mol % Er3+-doped phosphate glass fibre has been achieved. The output power of the two fluorescence signals of green 547 nm and red 667 nm are 178 and 42 μW, respectively, with an upconversion efficiency of 1.78×10−2% and 4.2×10−3% respectively.

Keywords

Attenuation Laser Pulse Output Power Fluorescence Spectrum P2O5 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bloembergen, Phys. Rev. 2 (1959) 84.Google Scholar
  2. 2.
    M. R. Brown and W. A. Shand, Phys. Rev. Lett. 11 (1963) 366.CrossRefGoogle Scholar
  3. 3.
    Idem, ibid. 12 (1964) 367.CrossRefGoogle Scholar
  4. 4.
    F. Auzel Proc. IEEE 61 (1973) 758.CrossRefGoogle Scholar
  5. 5.
    W. E. Case, M. E. Koch and A. W. Kueny, J. Lumin. 45 (1990) 351.CrossRefGoogle Scholar
  6. 6.
    P. Xie and S. C. Rand, Optics Lett. 17 (1992) 1116.CrossRefGoogle Scholar
  7. 7.
    T. Herbert, R. Wannemacher, R. M. Macfarlane and W. Length, Appl. Phys. Lett. 60 (1992) 2592.CrossRefGoogle Scholar
  8. 8.
    P. Urquahrt, IEE Proc. J 135 (1988) 385.Google Scholar
  9. 9.
    Y. M. Hua and Y. X. Chen, Chin. J. Lasers 19 (1992) 228.Google Scholar
  10. 10.
    E. W. J. L. Oomen, P. M. T. Legall and A. M. A. Vandongen, J. Lumin. 46 (1990) 353.CrossRefGoogle Scholar
  11. 11.
    M. A. Chamarro and R. Casea, ibid. 46 (1990) 59.CrossRefGoogle Scholar
  12. 12.
    D. C. Yeh, W. A. Sibley, I. Schneider, R. S. Afzal and I. Aggarwal, J. Appl. Phys. 69 (1991) 1648.CrossRefGoogle Scholar
  13. 13.
    Ali Gharavi and Gary L. Mcpherson, Appl. Phys. Lett. 61 (1992) 2635.CrossRefGoogle Scholar
  14. 14.
    Seng C. Goh, J. Non-Cryst. Solids 161 (1993) 227.CrossRefGoogle Scholar
  15. 15.
    P. Laporta, S. Longhi, S. Taccheo, O. Sveito and G. Sacchi, Electron. Lett. 28 (1992) 2067.CrossRefGoogle Scholar
  16. 16.
    Y. S. Jiang, S. B. Jiang and Y. Y. Jiang, J. Non-Cryst. Solids 112 (1989) 286.CrossRefGoogle Scholar
  17. 17.
    D. C. Tran, C. F. Fisher and G. H. Sigel, Electron. Lett. 18 (1982) 657.CrossRefGoogle Scholar
  18. 18.
    R. R. Jacobs and M. J. Weber, IEEE J. Quant. Electron. QE-12 (1976) 102.CrossRefGoogle Scholar
  19. 19.
    Y. L. Lu and N. B. Ming, Opt. Commun. 115 (1995) 110.CrossRefGoogle Scholar
  20. 20.
    B. R. Judd, Phys. Rev. 127 (1962) 750.CrossRefGoogle Scholar
  21. 21.
    A. A. Kaminskii, “Laser Crystals” (Springer, 1981) p. 154.Google Scholar
  22. 22.
    S. E. Stokowski, Laser Program Annual Reports, Lawrence Livermore National Laboratory, Vol. 2 (1978) p. 7. 52.Google Scholar
  23. 23.
    J. E. Townsend, S. B. Poole and D. N. Payne, Electron. Lett. 23 (1987) 329.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Ya -Lin Lu
    • 1
    • 2
  • Nai -Ben Ming
    • 1
    • 2
  1. 1.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Center for Advanced Studies in Science and Technology of MicrostructuresNanjingPeople’s Republic of China

Personalised recommendations