Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5700–5704 | Cite as

An atomic force microscopy study of polyester surfaces

  • Jing Jing
  • P. N. Henriksen
  • Hong Wang
  • P. Marteny
Papers

Abstract

The surface properties of amorphous and crystalline polyester films, well below their glass transition temperature, have been studied with an atomic force microscope. For amorphous films a corrugated pattern develops on the surface as a result of scanning and the corrugations are always perpendicular to the scan direction. When scanning is stopped the pattern shows a slight relaxation; however, the surface is plastically deformed. When crystalline films are scanned, similar patterns are seen which are less pronounced and require a much longer scan time. These results suggest that the physical properties of a glassy polyester surface may be different from the bulk, and the freedom of macromolecules is reduced upon crystallization, thus suppressing molecular motion at the surface.

Keywords

Polymer Crystallization Transition Temperature Atomic Force Microscope Glass Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. M. Leung and M. C. Goh, Science 255 (1992) 64.CrossRefGoogle Scholar
  2. 2.
    G. F. Meyers, B. M. Dekoven and J. T. Seitz, Langmuir 8 (1992) 2330.CrossRefGoogle Scholar
  3. 3.
    A. C. M. Yang, B. D. Terris and M. Kunz, Macro-molecules 24 (1991) 6800.CrossRefGoogle Scholar
  4. 4.
    T. R. Albrecht, M. M. Dovek, C. A. Lang, P. Grutter, C. F. Quate, S. W. J. Kuan, C. W. Frank and R. F. W. Pease, J. Appl. Phys. 64 (1988) 1178.CrossRefGoogle Scholar
  5. 5.
    B. Drake, C. B. Prater, A. L. Weisenhorn, S. A. C. Gould, T. R. Albrecht, C. F. Quate, D. S. Cannell, H. G. Hansma and P. K. Hansma, Science 243 (1989) 1586.CrossRefGoogle Scholar
  6. 6.
    H. A. Mizes, K. G. Loh, R. J. D. Miller, S. K. Ahuja and E. F. Grabowski, Appl. Phys. Lett 59 (1991) 2901.CrossRefGoogle Scholar
  7. 7.
    J. Brandrup and E. H. Immergut (eds), “Polymer handbook”, 3rd Edn (Wiley-Interscience, New York, 1989) p. VI/309–10.Google Scholar
  8. 8.
    “Nanoscope II”, Digital Instruments, Inc., 6780 Cortona Drive, Santa Barbara, CA 93117, USA.Google Scholar
  9. 9.
    G. Binnig, C. F. Quate and C. Gerber, Phys. Rev. Lett. 56 (1986) 930.CrossRefGoogle Scholar
  10. 10.
    S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire and J. Gruley, J. Appl. Phys. 65 (1989) 164.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Jing Jing
    • 1
  • P. N. Henriksen
    • 1
  • Hong Wang
    • 1
  • P. Marteny
    • 2
  1. 1.Department of PhysicsThe University of AkronAkronUSA
  2. 2.The Goodyear Tire and Rubber CompanyAkronUSA

Personalised recommendations