Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5663–5666 | Cite as

Viscosity of porous sintered glasses

  • A. R. Boccaccini
Papers

Abstract

Following an analogy between flow properties and field or transport properties, an equation which describes the porosity, P, dependence of the viscosity in porous sintered glasses is presented. Not only the pore volume fraction but also pore structure parameters, such as pore shape and orientation, are considered in the calculation and the equation is valid for the whole porosity range. For low porosities (P≦0.10) the approach coincides with the prediction of Mackenzie for spherical pores with a precision of 1%. The calculated values are in good agreement with experimental data on porous glasses available from the literature, if appropriate pore geometry is assumed at the different porosity levels.

Keywords

Polymer Viscosity Experimental Data Porosity Pore Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. N. Rahaman and L. C. de Jonghe, J. Am. Ceram. Soc., 70 (1987) C-348.CrossRefGoogle Scholar
  2. 2.
    A. R. Boccaccini, Sci. of Sintering 23 (1991) 151.Google Scholar
  3. 3.
    G. W. Scherer, J. Am. Ceram. Soc. 70 (1987) 719.CrossRefGoogle Scholar
  4. 4.
    V. C. Ducamp and R. Raj, ibid. 72 (1989) 798.CrossRefGoogle Scholar
  5. 5.
    M. N. Rahaman, L. C. de Jonghe, G. W. Scherer and R. J. Brook, ibid. 70 (1987) 766.CrossRefGoogle Scholar
  6. 6.
    J. K. Mackenzie, Proc. Phys. Soc. Lond. Sect. B 63 (1950) 2.CrossRefGoogle Scholar
  7. 7.
    G. W. Scherer, J. Non-Cryst. Solids 34 (1979) 239.CrossRefGoogle Scholar
  8. 8.
    M. N. Rahaman and L. C. de Jonghe, J. Am. Ceram. Soc. 73 (1990) 707.CrossRefGoogle Scholar
  9. 9.
    V. M. Sura and P. C. Panda, ibid. 73 (1990) 2697.CrossRefGoogle Scholar
  10. 10.
    L. F. Nielsen, Mater. Sci. Eng. 52 (1982) 39.CrossRefGoogle Scholar
  11. 11.
    A. R. Boccaccini, K. D. Kim and G. Ondracek Materialwiss. und Werkstofftech, 26 (1995) 263.CrossRefGoogle Scholar
  12. 12.
    W. D. Sältzer and B. Schultz, in “Continuum models of discrete systems”, edited by O. Brulin and R. K. T. Hsieh, (North Holland Publ., Amsterdam, 1983) pp. 423–430.Google Scholar
  13. 13.
    Idem, High Temp. High Press. 15 (1983) 289.Google Scholar
  14. 14.
    K. U. Kainer, Dissertation Technische Universität Clausthal (1985).Google Scholar
  15. 15.
    G. Ondracek, Rev. Powder Metall. Phys. Ceram. 3 (1987) 205.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. R. Boccaccini
    • 1
    • 2
  1. 1.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK
  2. 2.Department of Environmental SciencesUniversity of PlymouthPlymouthUK

Personalised recommendations