Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5639–5643 | Cite as

Preparation of PbTiO3 thin films using an alkoxide-alkanolamine sol-gel system

  • Seung Hyun Kim
  • Chang Eun Kim
  • Young Jei Oh
Papers

Abstract

The stable range of PbTiO3 sol and the processing conditions of uniform thin films were investigated using a solution of titanium isopropoxide, three kinds of alkanolamines (monoethanolamine, diethanolamine, triethanolamine), lead acetate trihydrate and isopropanol. Depending on the sol state with various alkanolamine/alkoxide molar ratios, diethanolamine (DEA) was very effective in preparing uniform and dense oxide films through room-temperature reaction, owing to its superior stability during the hydrolysis and condensation reaction. Perovskite PbTiO3 thin films were obtained on oxidized silicon wafer above 550 °C and completely pure films were obtained at 650 °C using DEA as a complexing agent. The dielectric constant and loss tangent of these thin films fired at 650 °C for 30 min were found to be ∼240 and ∼0.01 at 1 kHz, respectively.

Keywords

Perovskite Silicon Wafer Triethanolamine Isopropoxide Trihydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ijima, Y. Tomita, R. Takayama and I. Ueda, J. Appl. Phys. 60 (1986) 361.CrossRefGoogle Scholar
  2. 2.
    Y. Wang, P. Zhang, B. Qu and W. Zhong, ibid. 71 (1992) 6121.CrossRefGoogle Scholar
  3. 3.
    T. Nakagawa, J. Yamaguchi, M. Okuyama and Y. Hamakawa, Jpn Appl. Phys. 21 (1982) 655.CrossRefGoogle Scholar
  4. 4.
    Y. Takahashi and K. Yamaguchi, J. Mater. Sci. 25 (1990) 3950.CrossRefGoogle Scholar
  5. 5.
    R. A. Roy and K. F. Etzold, J. Mater. Res. 7 (1992) 1455.CrossRefGoogle Scholar
  6. 6.
    C. V. R. VasantKumar, R. Pascual and M. Sayer, J. Appl. Phys. 71 (1992) 864.CrossRefGoogle Scholar
  7. 7.
    C. H. Peng and S. Desu, Appl. Phys. Lett. 61 (1992) 16.CrossRefGoogle Scholar
  8. 8.
    B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot and J. Michael, J. Mater. Res. 7 (1992) 1876.CrossRefGoogle Scholar
  9. 9.
    Y. Takahashi and H. Naganawa, ibid. 95 (1987) 1107 (in Japanese).Google Scholar
  10. 10.
    D. C. Bradely, R. C. Mehrota and D. P. Gaur, “Metal alkoxide” (Academic Press, New York, 1978).Google Scholar
  11. 11.
    Bulent E. Yoldas, J. Mater. Sci. 21 (1986) 1087.CrossRefGoogle Scholar
  12. 12.
    C. Sanchez, J. Livage, M. Henry and F. Babonneau, J. Non-Cryst. Solids 100 (1988) 65.CrossRefGoogle Scholar
  13. 13.
    Guanghua Yi and Michael Sayer, Ceram. Bull. 70 (1991) 1175.Google Scholar
  14. 14.
    George W. Scherer, J. Am. Ceram. Soc. 73 (1990) 3.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Seung Hyun Kim
    • 1
  • Chang Eun Kim
    • 1
  • Young Jei Oh
    • 2
  1. 1.Department of Ceramic EngineeringYonSei UniversitySeoulKorea
  2. 2.Division of CeramicsKorea Institute of Science and TechnologyCheongryang, SeoulKorea

Personalised recommendations