Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5621–5631 | Cite as

Effect of matrix liquid phase on interphase formation in SiC fibre-reinforced Si2N2O-Al2O3-CaO composites

  • Hyun -Ho Shin
  • Y. Berta
  • R. F. Speyer
Papers

Abstract

Matrix compositions based on Si2N2O, with Al2O3 and CaO additions, were used to hot press Nicalon SiC fibre-reinforced composites at 1600 °C. With both CaO and Al2O3 additions, eutectic melting formed an appreciable volume of liquid phase during hot pressing, which remained as a stable glassy phase in the cooled composites. This liquid phase fostered formation of ∼240 nm thick carbon-rich interphases between the fibres and the matrix. These interphases showed relatively low interfacial shear strength and resulted in composites which showed non-catastrophic, notch-independent fracture. Matrices using either Al2O3 or CaO did not form adequate liquid phase to form coarse interphases, and fracture was catastrophic in nature. Post-heat treatment of the composites at 1000 °C showed peripheral oxidation (removal of the carbon content of the interphase) indicating limited protection afforded when glassy phase was present in the matrix. Controlled cooling in the hot press did not cause the liquid regions to devitrify.

Keywords

Al2O3 Liquid Phase Shear Strength Interfacial Shear Glassy Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Broek, “Elementary engineering fracture mechanics”, 4th Revised Edn (Kluwer Academic, Boston, 1991).Google Scholar
  2. 2.
    M. R. Piggott, “Load-bearing fiber composites” (Pergamon Press, New York, 1980).Google Scholar
  3. 3.
    S. J. Grisaffe, Adv. Mater. Process. 137(3) (1990) 43.Google Scholar
  4. 4.
    Idem, ibid. 137(3) (1990) 93.Google Scholar
  5. 5.
    J. R. Stephens, ibid. 137(4) (1990) 35.Google Scholar
  6. 6.
    R. Sorensen, PhD thesis, Technical University of Denmark (1993).Google Scholar
  7. 7.
    S. Awasthi and J. L. Wood, Ceram. Eng. Sci. Proc. 9 (1988) 553.CrossRefGoogle Scholar
  8. 8.
    W. E. Cole, P. Reagan, C. I. Metcalfe and S. R. Wysk, ibid. 8 (1987) 968.Google Scholar
  9. 9.
    J. Cook and J. E. Gordon, Proc. R. Soc. A282 (1964) 508.CrossRefGoogle Scholar
  10. 10.
    A. G. Evans, M. Y. He and J. W. Hutchinson, J. Am. Ceram. Soc. 72 (1989) 2300.CrossRefGoogle Scholar
  11. 11.
    P. G. Charalambides and A. G. Evans, ibid. 72 (1988) 746.CrossRefGoogle Scholar
  12. 12.
    A. H. Cottrell, Proc. R. Soc. A282 (1964) 2.CrossRefGoogle Scholar
  13. 13.
    H. C. Cao, E. Bischoff, O. Sbaizero, M. Ruhle, A. G. Evans, D. B. Marshall and J. J. Brennan, J. Am. Ceram. Soc. 73 (1990) 1691.CrossRefGoogle Scholar
  14. 14.
    J. Aveston, G. A. Cooper and A. Kelly, in “Properties of Fiber Composites”, National Physical Laboratory Conference Proceedings, edited by National Physical Laboratory (IPC Science and Technology Press, Guildford, UK, 1971) pp. 15–26.Google Scholar
  15. 15.
    J. Aveston and A. Kelly, J. Mater. Sci. 8 (1973) 352.CrossRefGoogle Scholar
  16. 16.
    B. Budiansky, J. W. Hutchinson and A. G. Evans, J. Mech. Phys. Solids 34 (1986) 167.CrossRefGoogle Scholar
  17. 17.
    J. Homeny, J. R. Van Valzah and M. A. Kelly, J. Am. Ceram. Soc. 73 (1990) 2054.CrossRefGoogle Scholar
  18. 18.
    K. M. Prewo, in “Proceedings of the Conference on Tailoring Multiphase and Composite Ceramics”, edited by R. E. Tressler, G. L. Messing, C. G. Pagano and R. E. Newnahm (Pennsylvania State University, Plenum, NY, 1985) pp. 529–47.Google Scholar
  19. 19.
    K. M. Prewo, J. J. Brennan and G. K. Layden, Am. Ceram. Soc. Bull. 65 (1986) 305.Google Scholar
  20. 20.
    Idem, Ibid. 65 (1986) 322.Google Scholar
  21. 21.
    H. H. Shin, Y. Berta and R. F. Speyer, in “Advances in ceramic composites”, Ceramic Transactions Vol. 38, edited by N. P. Bansal (American Ceramic Society, Columbus, OH, 1993) pp. 235–48.Google Scholar
  22. 22.
    T. Mah, M. G. Mendiratta, A. P. Katz, R. Ruh and K. S. Mazdiyasni, J. Am. Ceram. Soc. 68 (1985) C-248.Google Scholar
  23. 23.
    E. Y. Luh and A. G. Evans, Ceram. Eng. Sci. Proc. 6 (1986) 608.CrossRefGoogle Scholar
  24. 24.
    E. Y. Luh and A. G. Evans, J. Am. Ceram. Soc. 70 (1987) 466.CrossRefGoogle Scholar
  25. 25.
    M. D. Thouless, O. Sbaizero, E. Bischoff and E. Y. Luh, Mater. Res. Soc. Symp. Proc. 120 (1990) 333.CrossRefGoogle Scholar
  26. 26.
    K. H. Jack, in “Non-oxide technical and engineering ceramics”, edited by S. Hampshire (Elsevier Applied Science, NewYork, 1986) pp. 1–30.Google Scholar
  27. 27.
    K. H. Jack, Mater. Res. Soc. Symp. Proc., 287 (1993) 15.CrossRefGoogle Scholar
  28. 28.
    C. Laffon, A. M. Flank, P. Lagarde, M. Laridjani, R. Hagege, P. Olry, J. Cotteret, J. Dixmier, J. L. Miquel, H. Hommel and A. P. Legrand, J. Mater. Sci. 24 (1989) 1503.CrossRefGoogle Scholar
  29. 29.
    G. Simon and A. R. Bunsell, ibid. 17 (1982) 2371.CrossRefGoogle Scholar
  30. 30.
    “Standard Test Methods for Flexural Properties of Unreinforced Plastics and Electrical Insulating Materials: D790-91”, Annual Book of ASTM Standards (American Society for Testing and Materials, Philadelphia, PA, 1991).Google Scholar
  31. 31.
    D. B. Marshall and A. G. Evans, J. Am. Ceram. Soc. 68 (1985) 225.CrossRefGoogle Scholar
  32. 32.
    D. B. Marshall, ibid. 67 (1984) C-259.CrossRefGoogle Scholar
  33. 33.
    Reference manual for the Vickers indentor, Model M400-F, LECO Co., St Joseph, MI.Google Scholar
  34. 34.
    A. Zangvil, L. J. Gauchkler and M. Ruhle, J. Mater. Sci. 15 (1980) 788.CrossRefGoogle Scholar
  35. 35.
    I. K. Naik, L. J. Gauckler and T. Y. Tien, J. Am. Ceram. Soc. 61 (1978) 332.CrossRefGoogle Scholar
  36. 36.
    G. K. Layden, “Process Development for Pressureless Sintering of SiAlON Ceramic Components,” Final Technical Report R75-91072-4, United Technologies Research Center, East Hartford, CT (1976).Google Scholar
  37. 37.
    A. W. J. M. Rae, D. P. Thompson and K. H. Jack, in “Ceramics for high performance applications”, Vol. II, edited by J. J. Burke, E. N. Lenoe and R. N. Katz (Brook Hill, Chestnut Hill, MA, 1978) pp. 1039–67.Google Scholar
  38. 38.
    R. L. Coble and W. D. Kingery, J. Am. Ceram. Soc. 39 (1956) 377.CrossRefGoogle Scholar
  39. 39.
    R. F. Cooper and K. Chyung, J. Mater. Sci. 15 (1980) 463.Google Scholar
  40. 40.
    P. M. Benson, K. E. Spear and C. G. Pantano, Ceram. Eng. Sci. Proc. 9 (1988) 663.CrossRefGoogle Scholar
  41. 41.
    V. S. R. Murthy, L. Jie and H. Lewis, idib. 10 (1989) 938.CrossRefGoogle Scholar
  42. 42.
    R. Barrett and T. F. Page, ibid. 10 (1989) 897.CrossRefGoogle Scholar
  43. 43.
    H. H. Shin and R. F. Speyer, J. Mater. Sci. 29 (1994) 3630.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Hyun -Ho Shin
    • 1
  • Y. Berta
    • 1
  • R. F. Speyer
    • 1
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations