Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5581–5588 | Cite as

Columnar grain development in C-Mn-Ni low-alloy weld metals and the influence of nickel

  • Zhuyao Zhang
  • R. A. Farrar
Papers

Abstract

This paper discusses the development of columnar grains in as-deposited C-Mn-Ni(-Mo) low-carbon low-alloy weld metals and the influence of the alloying elements, particularly nickel. It was found that the austenite columnar grain size prior to the γ-α transformation of the weld metals was mainly controlled by the alloying contents rather than HAZ grains adjacent to the fusion boundaries, although the latter determined the size of the initial columnar grain size. The addition of nickel initially depressed the prior austenite grain size and subsequently dramatically coarsened it. This was related to the nickel equivalent (Nieq) of the weld metals and the peritectic reaction during the solidification process. Small columnar grains were associated with a Nieq between 3.4 and 6.2% which resulted in a peritectic reaction when the weld melt solidified, whilst a Nieq higher than 6.2% produced very large columnar grains because the weld pool would directly solidify into austenite and have a subsequent continuous growth.

Keywords

Polymer Grain Size Nickel Austenite Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Grong and D. K. Matlock, Int. Metal Rev. 31 (1986) 27.CrossRefGoogle Scholar
  2. 2.
    P. L. Harrison and R. A. Farrar, Metal Constr. 19 (1987) 392R.Google Scholar
  3. 3.
    H. K. D. H. Bhadeshia, L.-E. Svensson and B. Gretoft, Acta Metall. 33 (1985) 1271.CrossRefGoogle Scholar
  4. 4.
    N. A. Fleck, O. Grong, G. R. Edwards and D. K.Matlock, Weld. J. Res. Suppl. 65 (1986) 113s.Google Scholar
  5. 5.
    C. B. Dallam and D. L. Olson, ibid. 68 (1989) 198s.Google Scholar
  6. 6.
    R. A. Farrar, Zhuyao Zhang, S. R. Bannister and G. S. Barritte, J. Mater. Sci. 28 (1993) 1385.CrossRefGoogle Scholar
  7. 7.
    Zhuyao Zhang, PhD thesis, University of Southampton, Southampton (1994).Google Scholar
  8. 8.
    G. Thewlis, Mater. Sci. Technol. 10 (1994) 110.CrossRefGoogle Scholar
  9. 9.
    D. J. Widgery and G. S. Saunders, Weld. Inst. Res. Bull. 16 (1975) 277.Google Scholar
  10. 10.
    G. S. Barritte, PhD thesis, University of Cambridge, Cambridge (1982).Google Scholar
  11. 11.
    R. C. Cochrane, Welding in the World 21 (1/2) (1983) 16.Google Scholar
  12. 12.
    W. F. Savage, C. D. Lundin and A. H. Aronson, Weld. J. Res. Suppl. 44 (1965) 175s.Google Scholar
  13. 13.
    W. F. Savage and A. H. Aronson, ibid. 45 (1966) 175s.Google Scholar
  14. 14.
    W. F. Savage, E. F. Nippes and J. S. Erickson, ibid. 55 (1976) 213s.Google Scholar
  15. 15.
    W. F. Savage, Welding in the World 18 (5/6) (1980) 89.Google Scholar
  16. 16.
    G. M. Evans, Weld. J. Res. Suppl. 62 (1983) 313s.Google Scholar
  17. 17.
    D. S. Taylor and G. M. Evans, Metal Constr. 15 (1983) 438.Google Scholar
  18. 18.
    L.-E. Svensson and B. Gretoft, Weld. J. Res. Suppl. 69 (1990) 454s.Google Scholar
  19. 19.
    G. M. Evans, Oerlikon-Schweiβmitt 48 (124) (1990) 15.Google Scholar
  20. 20.
    F.-C. Liao and S. Liu, Weld. J. Res. Suppl. 71 (1992) 94s.Google Scholar
  21. 21.
    K. W. Jones, MSc Thesis, Cranfield Institute of Technology, Cranfield (1986).Google Scholar
  22. 22.
    F. B. Pickering, paper presented at conference Quantitative and Qualitative Metallurgy, 17–18 July 1975, Sheffield, The Institute of Metallurgical Technicians, Sheffield.Google Scholar
  23. 23.
    P. L. Harrison and R. A. Farrar, J. Mater. Sci. 16 (1981) 2218.CrossRefGoogle Scholar
  24. 24.
    M. Hansen, Constitution of Alloys (McGraw-Hill Company Inc., New York, 1958) p. 678.Google Scholar
  25. 25.
    J. F. Lancaster, Metallurgy of Welding (George & Unwin, London, 1980).CrossRefGoogle Scholar
  26. 26.
    P. L. Harrison, PhD Thesis, University of Southampton, Southampton (1983).Google Scholar
  27. 27.
    Zhuyao Zhang and R. A. Farrar, Microstructure and toughness of C-Mn-Ni low alloy weld metals and the influence of alloying elements, to be published. Submitted to Welding Journal Research supplement, American welding society, January 1995.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Zhuyao Zhang
    • 1
  • R. A. Farrar
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of SouthamptonSouthamptonUK

Personalised recommendations