Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5561–5575 | Cite as

Corrosion of nickel, iron, cobalt and their alloys in molten salt electrolytes

  • Tz. Tzvetkoff
  • A. Girginov
  • M. Bojinov
Review

Abstract

The processes of high-temperature corrosion, anodic dissolution and passivation of nickel, iron, cobalt and their alloys are reviewed to reveal the progress in understanding the reaction mechanisms defined in the last two decades. In the first part, the procedures of thermodynamical analysis of corrosion processes by potential — pO2− diagrams are outlined. The second part is devoted to the electrochemical corrosion, anodic dissolution and passivation of the metals studied, the reaction mechanisms and composition of the corrosion layers formed. The effect of the alloying elements on the corrosion resistance and anodic behaviour of the base metal is treated in the third part. A brief summary of the kinetics of the so-called “hot corrosion” of the studied metals and their alloys in contact with thin molten salt films and aggressive atmospheres is then given. Finally, some conclusions are drawn and some future trends of investigation are indicated.

Keywords

Iron Nickel Cobalt Corrosion Resistance Reaction Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Plambeck, in “Encyclopedia of the electrochemistry of the elements”, Vol. X, edited by Allen J. Bard (Marcel Dekker, New York, 1976).Google Scholar
  2. 2.
    J. Dubois and R. Buvet, Bull. Soc. Chim. Fr. 408 (1963) 2522.Google Scholar
  3. 3.
    M. D. Ingram and G. J. Janz, Electrochim. Acta 10 (1965) 783.Google Scholar
  4. 4.
    A. Conte and S. Casadio, Ricerca Scient. 36 (1966) 488.Google Scholar
  5. 5.
    A. Conte and M. D. Ingram, Electrochim. Acta 13 (1968) 1551.Google Scholar
  6. 6.
    S. L. Marchiano and A. J. Arvia, ibid. 17 (1972) 861.Google Scholar
  7. 7.
    G. Bombara, G. Baudo and A. Tamba, Corros. Sci. 8 (1968) 393.Google Scholar
  8. 8.
    C. A. C. Sequeira and M. G. Hocking, Br. Corros. J. 12 (1977) 158.Google Scholar
  9. 9.
    L. M. Gribaudo and J. J. Rameau, Rev. Int. Hautes Temp. Refract. 20 (1983) 89.Google Scholar
  10. 10.
    A. Rahmel, Electrochim. Acta 13 (1968) 495.Google Scholar
  11. 11.
    G. Baudo and A. Tamba, Br. Corros. J. 4 (1969) 129.Google Scholar
  12. 12.
    R. Doisneau and B. Tremillon, Bull. Soc. Chim. Fr. 420 (1976) 1419.Google Scholar
  13. 13.
    G. S. Picard, H. M. Lefebvre and B. Tremillon, J. Electrochem. Soc. 134 (1987) 52.Google Scholar
  14. 14.
    J. Amosse, J. Bouteillon and M. J. Barbier, C.R. Acad. Sci. Ser. C 276 (1968) 22.Google Scholar
  15. 15.
    J. Bouteillon and M. J. Barbier, J. Electroanal. Chem. 56 (1974) 399.Google Scholar
  16. 16.
    C. H. Liu, A. J. Zielen and D. M. Gruen, J. Electrochem. Soc. 120 (1973) 67.Google Scholar
  17. 17.
    R. Combes, J. Vedal and B. Tremillon, J. Electroanal. Chem. 27 (1970) 174.Google Scholar
  18. 18.
    V. Kochergin, O. Putina, V. Devyatkin and E. Kanaeva, Prof. Met. 11 (1975) 224.Google Scholar
  19. 19.
    D. Ferry, G. Picard and Y. Castrillejo, J. Appl. Electrochem. 23 (1993) 735.Google Scholar
  20. 20.
    X. Feng and C. A. Melendres, J. Electrochem. Soc. 129 (1982) 1245.Google Scholar
  21. 21.
    A. Zhbanov, A. Volkovich, A. Vinogradov, B. Kovalev and A. Vengerenko, Izv. VUZ Tsvet. Met. 2 (1981) 29.Google Scholar
  22. 22.
    A. Nishikata and S. Haruyama, Corros. NACE 42 (1986) 578.Google Scholar
  23. 23.
    A. J. Arvia, R. C. V. Piatti and J. J. Podesta, Electrochim. Acta 17 (1972) 901.Google Scholar
  24. 24.
    J. J. Podesta, R. C. V. Piatti and A. J. Arvia, Corros. Sci. 17 (1977) 225.Google Scholar
  25. 25.
    A. Baraka and S. Baraka, J. Appl. Electrochem. 14 (1984) 305.Google Scholar
  26. 26.
    Idem, ibid. 14 (1984) 417.Google Scholar
  27. 27.
    P. Prasad and P. Jena, Metall. Trans. 2 (1971) 1651.Google Scholar
  28. 28.
    J. Quets and W. H. Dresher, J. Mater. JMSA 4 (1969) 583.Google Scholar
  29. 29.
    K. E. Johnson and H. A. Laitinen, J. Electrochem. Soc. 110 (1963) 314.Google Scholar
  30. 30.
    G. Baudo, A. Tamba and G. Bombara, Corros. NACE 26 (1970) 193.Google Scholar
  31. 31.
    S. Pizzini and L. Agace, Corros. Sci. 5 (1965) 193.Google Scholar
  32. 32.
    F. Mansfeld, N. E. Paton and W. M. Robertson, Metall. Trans. 4 (1973) 321.Google Scholar
  33. 33.
    A. Rahmel, Chem. Eng. Technol. 41 (1969) 169.Google Scholar
  34. 34.
    E. Tachar-Moisescu and A. Rahmel, Electrochim. Acta. 20 (1975) 479.Google Scholar
  35. 35.
    C. A. C. Sequeira and B. Hocking, ibid. 8 (1978) 145.Google Scholar
  36. 36.
    Idem, ibid. 8 (1978) 179.Google Scholar
  37. 37.
    G. M. Abou-Elenien, J. Appl. Electrochem. 21 (1991) 632.Google Scholar
  38. 38.
    G. J. Janz and P. Saegusa, Electrochim. Acta 7 (1962) 393.Google Scholar
  39. 39.
    P. Degobert and O. Bloch, Butt. Soc. Chim. Fr. 407 (1962) 1887.Google Scholar
  40. 40.
    K. Y. Kim and O. F. Devereux, Corros. Sci. 22 (1982) 22.Google Scholar
  41. 41.
    O. F. Devereux, Corros. NACE 35 (1979) 125.Google Scholar
  42. 42.
    O. F. Devereux and K. Y. Kim, ibid. 36 (1980) 262.Google Scholar
  43. 43.
    O. F. Devereux, K. Y. Kim and K. S. Yeum, Corros. Sci. 23 (1983) 205.Google Scholar
  44. 44.
    N. Iyer and O. F. Devereux, J. Electrochem. Soc. 132 (1985) 1098.Google Scholar
  45. 45.
    G. Janz and A. Conte, Electrochim. Acta 9 (1964) 1269.Google Scholar
  46. 46.
    Idem, ibid. 9 (1964) 1279.Google Scholar
  47. 47.
    H. J. Davis and D. K. Kinnibrugh, J. Electrochem. Soc. 117 (1970) 392.Google Scholar
  48. 48.
    G. Smith, Oak Ridge National Lab. 15 (1957) 2129.Google Scholar
  49. 49.
    Idem, Trans. AIME 2 (1956) 71.Google Scholar
  50. 50.
    A. Kolotij and G. Vengzhen, Prot. Met. 11 (1975) 61.Google Scholar
  51. 51.
    V. Budnik and O. Zarubitskij, Zh. Prikl. Khim. 7 (1975) 1628.Google Scholar
  52. 52.
    TZ. Tzvetkoff and R. Raicheff, in “34th ISE Meeting”, Erlangen, 1983, Extended Abstracts, 0628.Google Scholar
  53. 53.
    TZ. Tzvetkoff and I. Ivanov, “Electrochemical Methods in Corrosion Research” (Toulouse, 1985) Extended Abstracts, p. 44.Google Scholar
  54. 54.
    B. Dmitruk, N. Babich and O. Zarubitskij, Ukr. Khim. Zh. 52 (1986) 728.Google Scholar
  55. 55.
    A. Rahmel and H. Kruger, Werkst. Korros. 18 (1967) 193.Google Scholar
  56. 56.
    S. M. Tin'Kova, V. V. Skorodumov, I. A. Kuprjakova and V. T. Gondarev, Izv. VUZ Tsvet. Met. 1 (1978) 141.Google Scholar
  57. 57.
    C. T. Liu and O. F. Devereux, J. Electrochem. Soc. 131 (1984) 247.Google Scholar
  58. 58.
    M. Jut and O. Ustinov, Prot. Met. 14 (1978) 320.Google Scholar
  59. 59.
    E. Matjushin and O. Ustinov, ibid. 14 (1978) 59.Google Scholar
  60. 60.
    D. L. Manning, J. Electroanal. Chem. 6 (1963) 227.Google Scholar
  61. 61.
    Idem, ibid. 7 (1964) 302.Google Scholar
  62. 62.
    S. Pizzini, M. Morlotti and E. Romer, J. Electrochem. Soc. 113 (1966) 2305.Google Scholar
  63. 63.
    A. Robin and J. DE Lepinay, Electrochim. Acta 37 (1992) 2433.Google Scholar
  64. 64.
    V. Kochergin, I. Viniarskaja and Yu. Kovalev, Prot. Met. 12 (1976) 79.Google Scholar
  65. 65.
    H. Laitinen and C. H. Liu, J. Am. Chem. Soc. 80 (1958) 1015.Google Scholar
  66. 66.
    M. V. Smirnov, A. V. Pokrovskij and N. A. Loginov, Zh. Neorg. Khim. 15 (1970) 3154.Google Scholar
  67. 67.
    V. A. Dubinin, I. F. Nichkov and S. P. Raspopin, Izv. VUZ Tsvet. Met. 9 (1966) 73.Google Scholar
  68. 68.
    L. G. Boxall, H. L. Jones and R. A. Osteryoung, J. Electrochem. Soc. 121 (1974) 212.Google Scholar
  69. 69.
    TZ. Tzvetkoff, in “35th ISE Meeting”, Berkeley, USA (1984) Extended Abstracts, A5, p. 293.Google Scholar
  70. 70.
    A. J. Arvia, J. J. Podesta and R. C. V. Piatti, Electrochim. Acta 17 (1972) 33.Google Scholar
  71. 71.
    J. C. Stemmelin, L. A. Suarez-Infanzon and J. Brenet, C.R. Acad. Sci. Ser. C 265 (1967) 141.Google Scholar
  72. 72.
    M. E. Martins, A. S. Calandra and A. J. Arvia, J. Inorg. Nucl. Chem. 36 (1974) 1705.Google Scholar
  73. 73.
    A. J. Arvia, J. J. Podesta and R. C. V. Piatti, Electrochim. Acta 16 (1971) 1797.Google Scholar
  74. 74.
    D. G. Hill, B. Porter and A. S. Gillespie, J. Electrochem. Soc. 105 (1958) 408.Google Scholar
  75. 75.
    A. Casino, J. J. Podesta and A. J. Arvia, Electrochim. Acta 16 (1971) 121.Google Scholar
  76. 76.
    D. D. Williams, J. A. Grand and R. R. Miller, J. Am. Chem. Soc. 78 (1956) 5150.Google Scholar
  77. 77.
    A. Kozhemjako, V. Prisjazhnij, D. Tkalenko and V. Mnikh, Prot. Met. 22 (1986) 984.Google Scholar
  78. 78.
    TZ. Tzvetkoff, in “36th ISE Meeting”, Salamanca, Spain (1986) Extended Abstracts CI, p. 171.Google Scholar
  79. 79.
    M. Azzi and J. J. Rameau, Corros. Sci. 24 (1984) 435.Google Scholar
  80. 80.
    I. Ozerjanaja, A. Finkelstein, T. Manukhina, O. Penjagina and V. Smirnov, Prot. Met. 3 (1967) 581.Google Scholar
  81. 81.
    V. Kochergin and A. Kokurova, Zh. Neorg. Khim. 7 (1962) 1331.Google Scholar
  82. 82.
    G. Janz and A. Conte, Corros. NACE 20 (1964) 237.Google Scholar
  83. 83.
    O. Penjagina, I. Ozerjanaja and N. Shamanova, Prot. Met. 17 (1981) 460.Google Scholar
  84. 84.
    Idem, Trudy Inst. Elektrokhim. UNT AN USSR 24 (1976) 39.Google Scholar
  85. 85.
    S. W. Orchard and G. Mamantov, J. Electrochem.Soc. 136 (1989) 3565.Google Scholar
  86. 86.
    V. Belov, T. Ershova and V. Kochergin, Ukr. Khim. Zh. 44 (1978) 581.Google Scholar
  87. 87.
    G. Dmitrieva, O. Kostyrko, I. Maksjuta, N. Razumova and A. Shurin, Prot. Met. 23 (1987) 316.Google Scholar
  88. 88.
    H. Atmani and J. J. Rameau, Corros. Sci. 24 (1984) 279.Google Scholar
  89. 89.
    A. Baraka, A. Abdel Rohman and A. El-Hosary, Br. Corros. J. 11 (1976) 44.Google Scholar
  90. 90.
    R. Doelling, H. Holtan, A. Sterlen and R. Tunold, Werkst. Korros. 31 (1980) 470.Google Scholar
  91. 91.
    F. Nijger, I. Ozerjanaja, V. Bezhenar and R. Marusjak, Prot. Met. 18 (1982) 75.Google Scholar
  92. 92.
    W. Schendler and W. Schwenk, Werkst. Korros. 32 (1981) 1428.Google Scholar
  93. 93.
    E. Erdoes, H. Altorfer and E. Denzler. ibid. 33 (1982) 373.Google Scholar
  94. 94.
    L. M. Gribaudo and J. J. Rameau, Corros. Sci. 24 (1984) 291.Google Scholar
  95. 95.
    V. Golenko and V. Putilin, Prot. Met. 17 (1981) 572.Google Scholar
  96. 96.
    M. Fazleev and A. Fedorov, ibid. 18 (1982) 448.Google Scholar
  97. 97.
    D. Inman and N. S. Wrench, Br. Corros. J. 1 (1966) 246.Google Scholar
  98. 98.
    R. A. Rapp and K. S. Goto, in “Molten Salts”, Vol. 81-10, edited by J. Braunstein and J. R. Selman (Electrochemical Society Softbound Proceedings Series, Pennington, NJ, 1981) p. 159.Google Scholar
  99. 99.
    D. A. Shores, in “High Temperature Corrosion”, NACE-6, edited by R. A. Rapp, (National Association of Corrosion Engineers, Houston, TX, 1983) p. 493.Google Scholar
  100. 100.
    C. O. Park and R. A. Rapp, J. Electrochem. Soc. 133 (1986) 1636.Google Scholar
  101. 101.
    R. A. Rapp, Corrosion 42 (1986) 568.Google Scholar
  102. 102.
    Idem, Mater. Sci. Eng. 87 (1987) 319.Google Scholar
  103. 103.
    Y. S. Zhang and R. A. Rapp, in “Molten Salts”, Vol. 87-7, edited by G. Mamantov, M. Blander, C. Hussey, C. Mamantov, M. Saboungi and J. Wilkes (Electrochemical Society Softbound Proceedings Series, Pennington, NT, 1987) p. 707.Google Scholar
  104. 104.
    R. A. Rapp, in “Selected Topics on High Temperature Chemistry”, edited by O. Johannesen and A. G. Anderson (Elsevier, New York, 1989) p. 291.Google Scholar
  105. 105.
    N. Otsuka and R. A. Rapp, J. Electrochem. Soc. 137 (1990) 46.Google Scholar
  106. 106.
    Y. M. Wu and R. A. Rapp, ibid. 138 (1991) 2683.Google Scholar
  107. 107.
    N. Otsuka and R. A. Rapp, ibid. 137 (1990) 53.Google Scholar
  108. 108.
    Y. S. Zhang and R. A. Rapp, Corrosion 43 (1987) 348.Google Scholar
  109. 109.
    K. L. Luthra and D. A. Shores, J. Electrochem. Soc. 127 (1980) 2202.Google Scholar
  110. 110.
    R. L. Jones and S. T. Gadomski, ibid. 129 (1982) 1613.Google Scholar
  111. 111.
    H. S. Hsu, J. H. Devan and M. Howell, ibid 134 (1987) 3038.Google Scholar
  112. 112.
    K. N. Lee and D. A. Shores, ibid. 137 (1990) 859.Google Scholar
  113. 113.
    D. M. Johnson, D. P. Whittle and J. Stringer, Corros. Sci. 15 (1975) 649.Google Scholar
  114. 114.
    Idem, ibid. 15 (1975) 721.Google Scholar
  115. 115.
    G. C. Fryburg, F. J. Kohl, C. A. Stearns and W. L. Fielder, J. Electrochem. Soc. 129 (1982) 571.Google Scholar
  116. 116.
    G. C. Fryburg, F. J. Kohl and C. A. Stearns, ibid. 131 (1984) 2985.Google Scholar
  117. 117.
    A. K. Misra, ibid. 133 (1986) 1029.Google Scholar
  118. 118.
    Idem. ibid. 133 (1986) 1038.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Tz. Tzvetkoff
    • 1
  • A. Girginov
    • 2
  • M. Bojinov
    • 3
  1. 1.Elchem Engineering LaboratorySofia University of TechnologySofiaBulgaria
  2. 2.Department of Physical ChemistrySofia University of TechnologySofiaBulgaria
  3. 3.Central Laboratory of Electrochemical Power SourcesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations