Advertisement

Journal of Materials Science

, Volume 29, Issue 12, pp 3358–3362 | Cite as

A comparison of methods for estimating the weld-metal cooling rate in laser welds

  • I. Gilath
  • J. M. Signamarcheix
  • P. Bensussan
Article

Abstract

Microstructural transformations in 304 L stainless-steel welds as a function of welding parameters were studied using a high-power continuous CO2 laser. The experimental results can be represented by the relation λ1 = 40 V−1/2 where λ1 is the primary dendrite spacing in μm and V is the welding speed in mm s−1, for different laser powers and two sample thicknesses. The cooling rates estimated by different methods have been found to be in the range 102 to 3 × 103 Ks−1, and the temperature gradients are in the range 102 to 9 × 102 K cm−1. The experimental results are shown to be in very good agreement with recent dendrite-growth models. An analogy is presented between the cooling rate during melt spinning and laser welding.

Keywords

Welding Cool Rate Temperature Gradient Laser Power Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Elmer, S. M. Allen and T. W. Eager, Metall. Trans. A 20 (1989) 2117–2131.CrossRefGoogle Scholar
  2. 2.
    P. A. Molian, J. Mater. Sci. Lett. 4 (1985) 265–267.CrossRefGoogle Scholar
  3. 3.
    S. Katayama and A. Matsunawa, Proceedings of ICALEO (1984) pp. 60–67.Google Scholar
  4. 4.
    M. A. Taha, J. Mater. Sci. Lett. 5 (1986) 307–310.CrossRefGoogle Scholar
  5. 5.
    M. Rappaz, B. Carrupt, M. Zimmerman and W. Kurz, Helvetica, Phys. Acta 60 (1987) 924–936.Google Scholar
  6. 6.
    C. L. Chan, J. Mazumer and M. M. Chen, J. Appl. Phys. 64 (1988) 6166–6174.CrossRefGoogle Scholar
  7. 7.
    W. E. Brower, R. Strachan and M. C. Fleming, AFS Cast. Met. Res. 12 (1970) 176.Google Scholar
  8. 8.
    M. C. Fleming, “Solidification processing” (McGraw Hill, New York, 1974) pp. 146 ff.Google Scholar
  9. 9.
    W. Kurz, B. Giovanola and R. Trivedi, Acta Metall. 34 (1986) 823–830.CrossRefGoogle Scholar
  10. 10.
    M. Rappaz, S. A. David, J. M. Vitek and L. Boatner, Metall. Trans. A 20 (1989) 1125–1138.CrossRefGoogle Scholar
  11. 11.
    S. A. David, J. M. Vitek, M. Rappaz and L. A. Boatner, ibid. 21 (1990) 1767–1782.CrossRefGoogle Scholar
  12. 12.
    M. Rappaz, S. A. David, J. M. Vitek and L. A. Boatner, ibid. 21 (1990) 1767–1782.CrossRefGoogle Scholar
  13. 13.
    B. Dabezies, E. Ranchy and J. M. Signamarcheix, Proceedings of ICALEO, October (1989) Orlando.Google Scholar
  14. 14.
    B. Dabezies, L. Gauthier and J. M. Signamarcheix, OPTO, September to October (1990) Paris, pp. 16–23.Google Scholar
  15. 15.
    C. H. Henning and R. Parker, Trans. ASME, May (1967) 146–154.Google Scholar
  16. 16.
    M. Rappaz, M. Gremaud, R. Dekumbis and W. Kurz, European Conference of Laser Treatment of Materials,edited by B. L. Mortike (Information-gesellschaft Verlag, Bad Neuheim, 1986) pp. 43–53.Google Scholar
  17. 17.
    B. P. Bewlay and B. Cantor, Int. J. Rapid Solidification 2 (1986) 107–123.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • I. Gilath
    • 1
  • J. M. Signamarcheix
    • 2
  • P. Bensussan
    • 2
  1. 1.SOREQYavneIsrael
  2. 2.D.G.A.ArcveilFrance

Personalised recommendations