Journal of Materials Science

, Volume 29, Issue 12, pp 3351–3357 | Cite as

Two stages of interfacial reaction in B-Al composite

  • V. V. Astanin
  • L. A. Imayeva


Using an original technique, new data for the interfacial reaction in B-Al composites have been obtained. Two stages of the boron fibre/aluminium interface reaction were revealed. In Stage 1, due to the aluminothermal reduction of the oxide film on the boron fibre, finecrystalline rhombohedral boron, alumina and dispersed aluminium borides are formed. The latter are formed by the reaction with the-fine-crystalline boron and do not affect the fibre strength but can contribute to a more intensive interaction. In Stage 2, borides are formed by direct reaction with the fibres, thus seriously reducing their strength.


Oxide Polymer Alumina Boron Oxide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ochiai, Y. Irie, K. Osamura and Y. Murakami, Z. Metallkde 74 (1983) 44.Google Scholar
  2. 2.
    H. H. Grimes, R. A. Lad and J. E. Maisel, Met. Trans. 8A (1977) 1999.CrossRefGoogle Scholar
  3. 3.
    G. C. Olsen and S. Tompkins, in “Failure Modes in Composites IV”,edited by J. A. Cornie and F. W. Crossman (TMS-AIME, New York, 1979) pp. 1–21.Google Scholar
  4. 4.
    T. Kyono, I. W. Hall and M. Taya, J. Mater. Sci. 21 (1986) 1879.CrossRefGoogle Scholar
  5. 5.
    I. Hall, T. Kyono and A. Diwanji, ibid. 22 (1987) 1743.CrossRefGoogle Scholar
  6. 6.
    A. G. Metcalfe (ed.), “Interfaces in Metal Matrix Composites”, in “Composite Materials”, Vol. I (Academic Press, New York, 1974).Google Scholar
  7. 7.
    V. V. Astanin, A. A. Sirenco and K. B. Zaitsev, Zav. Lab. 11 (1988) 72.Google Scholar
  8. 8.
    I. Vega-Boggio and O. Vingsbo, J. Mater. Sci. 12 (1987) 175.Google Scholar
  9. 9.
    V. V. Astanin and L. A. Imayeva, Physics-Chemistry of Material Treatment. 4 (1993) 128.Google Scholar
  10. 10.
    I. L. Svetlov, Yu. V. Levinsky and T. V. Zaikovskaya, “Compositsionye metallicheskie materialy”, (Onti Viam, Moscow, 1972) p. 91.Google Scholar
  11. 11.
    P. S. Kyslyi, V. A. Neronov, T. A. Prihna and Y. B. Bevza, “Boridy aiuminija”, (Izd. Nauk. dum., Kiev, 1990) pp. 45–62.Google Scholar
  12. 12.
    A. M. Nicitinscyi, “Payca aluminiya i ego splavov”, (Mashinostr, Moscow, 1983) p. 23.Google Scholar
  13. 13.
    G. V. Samsonov, T. I. Serebrjacova and V. A. Neronov, “Boridy”, (Atomizdat, Moscow, 1975) p. 376.Google Scholar
  14. 14.
    G. V. Samsonov, V. A. Neronov and L. K. Lamiknov, J. Less Common Metals 67 (1979) 291.CrossRefGoogle Scholar
  15. 15.
    O. A. Golicova, V. M. Orlov and T. Homidov, Neorgan. Mater. 13 (1977) 1097.Google Scholar
  16. 16.
    F. Lihi and P. Z. Jenitshek, Metallkde 44 (1953) 414.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • V. V. Astanin
    • 1
  • L. A. Imayeva
    • 1
  1. 1.Russian Academy of SciencesInstitute for Metals Superplasticity ProblemsUfaRussia

Personalised recommendations