Journal of Materials Science

, Volume 29, Issue 12, pp 3342–3350 | Cite as

Modelling of continuous recrystallization in aluminium alloys

  • M. T. Lyttle
  • J. A. Wert


Microstructure and microtexture analyses have been made of three aluminium alloys after annealing alone and after concurrent straining and annealing, and simulative models of microstructure/microtexture evolution processes have been formulated. Both experimental and modelling results are presented as boundary misorientation distributions. For each alloy, the results show that annealing alone does not significantly alter the boundary misorientation distribution, while concurrent straining and annealing (up to a strain of 0.5) decreases the fraction of low-angle boundaries. To understand the mechanisms by which concurrent straining and annealing alter the boundary misorientation distribution, three simulative models of microstructure/microtexture evolution during concurrent straining and annealing have been formulated. Application of the models to experimentally determined initial microstructure/microtexture states shows that the boundary sliding (sub)grain rotation model decreases the fraction of low-angle boundaries, the dislocation glide (sub)grain rotation model increases the fraction of low-angle boundaries, and the (sub)grain neighbour switching model has a modest effect on the boundary misorientation distribution. A combination of the boundary sliding (sub)grain rotation model and the (sub)grain neighbour switching model most closely reproduces the boundary misorientation distributions found experimentally.


Polymer Aluminium Microstructure Recrystallization Simulative Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hu, in “Recovery and Recrystallization of Metals”,edited by L. Himmel (Gordon and Breach, New York, 1963) p. 311.Google Scholar
  2. 2.
    J. C. M. Li, J. Appl. Phys. 33 (1962) 2958.CrossRefGoogle Scholar
  3. 3.
    R. D. Doherty and J. W. Cahn, J. Less-Common Metals 28 (1979) 279.CrossRefGoogle Scholar
  4. 4.
    R. D. Doherty, in “Recrystallization of Metallic Materials”,edited by F. Haessner (Riederer, Stuttgart, 1978) p. 23.Google Scholar
  5. 5.
    J. Grewen and J. Huber, “ p. 111.Google Scholar
  6. 6.
    B. M. Watts, M. J. Stowell, B. L. Bakie and D. G. E. Owen, Met. Sci. 10 (1976) 189.CrossRefGoogle Scholar
  7. 7.
    Idem, ibid. 10 (1976) 198.Google Scholar
  8. 8.
    R. H. Bricknell and J. W. Edington, Met. Trans. 10A (1979) 1257.CrossRefGoogle Scholar
  9. 9.
    Idem, ibid. 27 (1979) 1303.Google Scholar
  10. 10.
    E. Nes, J. Mater. Sci. Lett. 13 (1978) 2052.CrossRefGoogle Scholar
  11. 11.
    Idem Met. Sci. 13 (1979) 211.CrossRefGoogle Scholar
  12. 12.
    Idem in “Superplasticite/Superplasticity”,edited by B. Baudelet and M. Suery (Editions du CNRS, Paris, 1985) p. 7.1.Google Scholar
  13. 13.
    T. R. McNelley, E.-W. Lee and M. E. Mills, Metall. Trans. 17A (1986) 1035.CrossRefGoogle Scholar
  14. 14.
    E.-W. Lee, T. R. McNelley, A. F. Stengel, ibid. 17A (1986) 1043.CrossRefGoogle Scholar
  15. 15.
    T. R. McNelley, E.-W. Lee and A. Garg, in “Aluminum Alloys-Physical and Mechanical Properties”,edited by E. A. Starke and T. H. Sanders (Engineering Materials Advisory Services, West Midlands, 1986) p. 1269.Google Scholar
  16. 16.
    E.-W. Lee and T. R. McNelley, Mater. Sci. Eng. 93 (1987) 45.CrossRefGoogle Scholar
  17. 17.
    Idem, ibid. 96 (1987) 253.CrossRefGoogle Scholar
  18. 18.
    S. J. Hales and T. R. McNelley, Acta Metall. 36 (1988) 1229.CrossRefGoogle Scholar
  19. 19.
    Idem in “Superplasticity in Aerospace”,edited by H. C. Heikkenen and T. R. McNelley (TMS, Warrendale, PA, 1988) p. 61.Google Scholar
  20. 20.
    R. Crooks, “, p. 51.Google Scholar
  21. 21.
    H. Gudmundsson, D. D. Brooks and J. A. Wert, Acta Metall. Mater. 39 (1991) 19.CrossRefGoogle Scholar
  22. 22.
    D. D. Brooks, H. Gudmundsson and J. A. Wert, in “Hot Deformation of Aluminum Alloys”,edited by T. G. Langdon, H. D. Merchant, J. G. Morris and M. A. Zaidi (TMS, Warrendale, PA, 1991) p. 55.Google Scholar
  23. 23.
    A. J. Shakesheff, D. S. McDarmaid and P. J. Gregson, Mater. Sci. Technol. 7 (1991) 276.CrossRefGoogle Scholar
  24. 24.
    S. J. Hales, T. R. McNelley and H. J. McQueen, Metall. Trans. 22A (1991) 1037.CrossRefGoogle Scholar
  25. 25.
    A. W. Bowen and J. Hirsch, in “Eighth International Conference on Textures of Materials”, edited by J. S. Kallend and G. Gottstein (TMS, Warrendale, PA, 1988) p. 549.Google Scholar
  26. 26.
    J. Hirsch, K. A. Padmanabhan, K. Lucke, “, p. 555.Google Scholar
  27. 27.
    N. A. Gjostein and F. N. Rhines, Acta Metall. 7 (1959) 319.CrossRefGoogle Scholar
  28. 28.
    G. Hassen, M. Biscondi, P. Lagarde, J. Levy and C. Goux, Surf. Sci. 31 (1972) 115.CrossRefGoogle Scholar
  29. 29.
    H. J. McQueen and J. E. Hockett, Metall. Trans. 1 (1970) 2997.Google Scholar
  30. 30.
    A. R. Jones, B. Ralph and N. Hansen, Proc. R. Soc. Lond. A 368 (1979) 345.CrossRefGoogle Scholar
  31. 31.
    A. R. Jones, in “Grain Boundary Structure and Kinetics” (ASM, Metals Park, OH, 1980) p. 379.Google Scholar
  32. 32.
    B. Bay and N. Hansen, in “Recrystallization and Grain Growth Multiphase and Particle-Containing Materials”,edited by N. Hansen, A. R. Jones and T. Leffers (Risø-National Laboratory, Risø, 1980) p. 51.Google Scholar
  33. 33.
    N. Hansen and B. Bay, Acta Metall. 29 (1981) 65.CrossRefGoogle Scholar
  34. 34.
    A. R. Jones and N. Hansen, ibid. 29 (1981) 589.CrossRefGoogle Scholar
  35. 35.
    C. Y. J. Barlow, B. Bay and N. Hansen, Philos. Mag. A 51 (1985) 253.Google Scholar
  36. 36.
    E. Nes, W. B. Hutchinson and A. A. Ridha, in “Seventh International Conf. Strength of Metals and Alloys”,edited by H. J. McQueen, J.-P. Bailon, J. I. Dickson, J. J. Jonas and M. G. Akben (Pergamon Press, Oxford, 1986) p. 57.Google Scholar
  37. 37.
    B. Bay, N. Hansen and D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A113 (1989) 385.CrossRefGoogle Scholar
  38. 38.
    J. W. Edington, Metall. Trans. 13A (1982) 703.CrossRefGoogle Scholar
  39. 39.
    W. D. Nix, in “Superplastic Forming”,edited by S. P. Agrawal (ASM, Metals Park, OH, 1985) p. 3.Google Scholar
  40. 40.
    K. Matsuki, H. Morita, M. Yamaua and Y. Murakami, Met. Sci. 11 (1977) 156.CrossRefGoogle Scholar
  41. 41.
    K. Matsuki, H. Minami, M. Tokizawa and Y. Murakami, ibid. 13 (1979) 619.CrossRefGoogle Scholar
  42. 42.
    A. E. Geckinli and C. R. Barrett, J. Mater. Sci. 11 (1976) 510.CrossRefGoogle Scholar
  43. 43.
    W. Beere, ibid. 12 (1977) 2093.CrossRefGoogle Scholar
  44. 44.
    Idem Phil. Trans. R. Soc. Lond. A 288 (1978) 177.CrossRefGoogle Scholar
  45. 45.
    S. K. Tung and R. Maddin, Trans. AIME 209 (1957) 905.Google Scholar
  46. 46.
    F. Weinberg, ibid. 212 (1958) 808.Google Scholar
  47. 47.
    M. Biscondi and C. Goux, Mem. Sci. Rev. Metall. 65 (1968) 167.CrossRefGoogle Scholar
  48. 48.
    P. Lagarde and M. Biscondi, Canad. Metall. Q. 13 (1974) 245.CrossRefGoogle Scholar
  49. 49.
    T. Watanabe, N. Kuriyama and S. Karashima, in “Proceedings of the Fourth International Conference on Strength of Metals and Alloys”, Nancy, France, (1976) Vol. 1, p. 383.Google Scholar
  50. 50.
    Z. Q. Zhou, B. L. Wu and C. Q. Chen, in “Aluminum Alloys'90, Proceedings of the Second International Conference on Aluminum Alloys — Their Physical and Mechanical Properties”,edited by C. Q. Chen and E. A. Starke (International Academic, Bejing, 1990) p. 571.Google Scholar
  51. 51.
    H. K. D. H. Bhadeshia, in “Worked Examples in the Geometry of Crystals” (Chameleon Press, London, 1987) p. 18.Google Scholar
  52. 52.
    J. F. W. Bishop and R. Hill, Philos. Mag. 42 (1951) 1298.CrossRefGoogle Scholar
  53. 53.
    U. F. Kocks and H. Chandra, Acta Metall. 30 (1982) 695.CrossRefGoogle Scholar
  54. 54.
    C. N. Reid, in “Deformation Geometry for Materials Scientists” (Pergamon Press, Oxford, 1973) p. 137.Google Scholar
  55. 55.
    M. F. Ashby and R. A. Verall, Acta Metall. 21 (1973) 149.CrossRefGoogle Scholar
  56. 56.
    A. Getis and B. Boots, in “Models of Spatial Processes” (Cambridge University Press, Cambridge, 1978) p. 126.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. T. Lyttle
    • 1
  • J. A. Wert
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations