Advertisement

Journal of Materials Science

, Volume 29, Issue 12, pp 3329–3336 | Cite as

Production of stabilized and non-stabilized ZrO2 by carbothermic reduction of ZrSiO4

  • S. De Souza
  • B. S. Terry
Article

Abstract

The kinetics of reduction of zircon by carbon have been investigated in the temperature range 1400–1650 °C. Volatilization of SiO permits production of zirconia of about 96% purity direct from zircon with 100% removal of the silicon content being achieved in less than 2 h at 1650 °C. Addition of MgO, Y2O3 or CaO stabilizers to zircon prior to the reduction permits direct production of partially stabilized zirconia from zircon by means of carbothermic reduction. The presence of such stabilizers has been found to produce a slight increase in the reduction of kinetics of zircon.

Keywords

Polymer Silicon Zircon Y2O3 Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Stevens, “Zirconia and zirconia ceramics”, Magnesium Elektron Ltd, July 1986.Google Scholar
  2. 2.
    J. D. Hancock, Min. Sci. Eng. 9 (1) (1977) 25.Google Scholar
  3. 3.
    Humphreys Corporation, Brit. Pat. 1389 585, April 1975.Google Scholar
  4. 4.
    R. Stevens, in “Proceedings of the first European Symposium on Engineerings Ceramics” 25–26 February, London (1985) pp. 97–110.Google Scholar
  5. 5.
    U. O. Igiehon, Thesis, D Phil, University of London, Imperial College of Science, Technology and Medicine, November 1989.Google Scholar
  6. 6.
    D. Azubike, Thesis, D Phil. University of London, Imperial College of Science, Technology and Medicine, October 1988.Google Scholar
  7. 7.
    N. Howell Furman (ed.) “Standard Methods of Chemical Analysis”, 6th Edn, Vol. I The Elements (Krieger, Huntington, New York, 1975).Google Scholar
  8. 8.
    V. L. K. Lou T. E. Mitchell and H. Heuer, J. Am. Ceram. Soc. 68 (2) (1985) 49.CrossRefGoogle Scholar
  9. 9.
    J. J. Biernacki and G. P. Wotzak, ibid. 72 (1) (1989) 122.CrossRefGoogle Scholar
  10. 10.
    P. D. Miller, J. G. Lee and I. B. Cutler, ibid. 62 (3-4) (1979) 147.CrossRefGoogle Scholar
  11. 11.
    W. W. Pultz and W. Hertl, Trans. Faraday Soc. 62 (1968) 2499.CrossRefGoogle Scholar
  12. 12.
    V. S. Stubican, R. C. Hink and S. P. Ray, Am. Ceram. Soc. 61 (1-2) (1978) 17.CrossRefGoogle Scholar
  13. 13.
    V. S. Stubican and P. Ray, ibid. 60 (11-12) (1977) 534.CrossRefGoogle Scholar
  14. 14.
    D. Viechnicki and V. S. Stubican, ibid. 48 (6) (1965) 292.CrossRefGoogle Scholar
  15. 15.
    T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L. H. Cadoff and B. R. Rossing, J. Mater. Sci. 12 (1977) 2421.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. De Souza
    • 1
  • B. S. Terry
    • 1
  1. 1.Department of MaterialsImperial CollegeLondonUK

Personalised recommendations