Journal of Materials Science

, Volume 29, Issue 12, pp 3269–3273 | Cite as

X-ray powder diffraction and Mössbauer spectroscopic studies on the solubility limits in γ-FeOOH/γ-AIOOH solid solutions

  • E. Wolska
  • J. Šubrt
  • Z. Hába
  • J. Tláskal
  • U. Schwertmann


The formation of substitutional solid solutions between the isostructural γ-FeOOH (lepidocrocite) and γ-AlOOH (boehmite) was investigated by X-ray powder diffraction, Mössbauer spectroscopy, electron microscopic and thermal analysis. Samples of γ-(Fe,Al)OOH were obtained at 15 °C and pH 8 by oxidation of mixed FeCl2-Al(NO3)3 solutions. The unit cell parameters decreased with increasing aluminium content from a=0.3072 nm, b=1.253 nm and c=0.3874 nm, to 0.3053, 1.250 and 0.3858 nm, respectively, The temperature of the differential thermal gravimetry maximum increased with aluminium content up to 10 mol% Al. Quadrupole splitting distribution in the room temperature Mössbauer spectra showed a clear dependence on the concentration of substituted aluminium, enabling determination of the γ-(Fe1−xAlx)1−y/3O1−y(OH)1+y solid solution limits at 0⩽ x⩽ 0.1. The cation deficiency in samples responded to y=0.16 over the whole range of solid solutions formed.


Solid Solution Thermal Analysis Unit Cell Parameter Spectroscopic Study Gravimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. de Villiers and T. H. van Rooyen, Clay Miner. 7 (1967) 229.CrossRefGoogle Scholar
  2. 2.
    R. M. Taylor and U. Schwertmann, Clays Clay Miner. 28 (1980) 267.CrossRefGoogle Scholar
  3. 3.
    C. W. Childs and A. D. Wilson, Aust. J. Soil Res. 21 (1983) 489.CrossRefGoogle Scholar
  4. 4.
    R. W. Fitzpatrick, R. M. Taylor, U. Schwertmann and C. W. Childs, ibid. 23 (1985) 543.CrossRefGoogle Scholar
  5. 5.
    U. Schwertmann and E. Wolska, Clays Clay Miner. 38 (1990) 209.CrossRefGoogle Scholar
  6. 6.
    E. Wolska, W. Szajda and P. Piszora, J. Therm. Anal. 38 (1992) 2115.CrossRefGoogle Scholar
  7. 7.
    E. Wolska, Solid State Ionics 44 (1990) 119.CrossRefGoogle Scholar
  8. 8.
    E. de Grave, R. M. Persoons, D. G. Chambaere, R. E. Vandenberghe and L. H. Bowen, Phys. Chem. Miner. 13 (1986) 61.CrossRefGoogle Scholar
  9. 9.
    E. Wolska and J. Baszyński, Phys. Status Solidi (a) 95 (1986) 87.CrossRefGoogle Scholar
  10. 10.
    H. Stanjek and U. Schwertmann, Clays Clay Miner. 40 (1992) 347.CrossRefGoogle Scholar
  11. 11.
    E. Wolska and U. Schwertmann, N. Jb. Miner. Mh. 5 (1993) 213.Google Scholar
  12. 12.
    J. Šubrt, F. Hanousek, V. Zapletal, J. Lipka and M. Hucl, J. Therm. Anal. 20 (1981) 61.CrossRefGoogle Scholar
  13. 13.
    R. E. Vandenberghe, E. de Grave, C. Landuydt and L. H. Bowen, Hyperfine Interactions 53 (1990) 175.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • E. Wolska
    • 1
  • J. Šubrt
    • 2
  • Z. Hába
    • 2
  • J. Tláskal
    • 2
  • U. Schwertmann
    • 3
  1. 1.Department of MagnetochemistryAdam Mickiewicz UniversityPoznańPoland
  2. 2.Czechoslovak Academy of SciencesInstitute of Inorganic ChemistryPragueCzech Republic
  3. 3.Institute of Soil SciencesTechnical University MunichFreising-WeihenstephanGermany

Personalised recommendations