Journal of Materials Science

, Volume 29, Issue 12, pp 3231–3238 | Cite as

Nylon-6/rubber blends

Part II Temperature effects during high speed deformation
  • K. Dijkstra
  • R. J. Gaymans


The deformation zone of fractured nylon-6/ethylene-propylene rubber specimens was studied using scanning electron microscopy (SEM). In this deformation zone three distinct layers were observed. In the main part of the stress-whitened zone only cavitation was visible. From 150-5 μm below the fracture surface, massive plastic deformation was observed. Directly under the fracture surface there was a layer about 3–5 μm thick where no cavitation or deformation was visible. This zone without cavitation was only visible when the specimen was fractured at high deformation rates. It is proposed that this top layer consists of material which was molten during fast crack propagation under adiabatic conditions. This hypothesis has been confirmed by model calculations and experiments. When the deformation rate is very high (greater than the impact velocities) plastic deformation is not homogeneous throughout the deformation zone, but confined to layers.


Rubber Plastic Deformation Fracture Surface Cavitation Impact Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. B. Bucknall, in “Toughened Plastics” (Applied Science, London, 1977).CrossRefGoogle Scholar
  2. 2.
    S. Cimmino, F. Coppola, L. D'Orazio, R. Greco, G. Maglio, M. Malinconico, C. Mancarella, E. Martuscelli and G. Ragosta, Polymer 27 (1986) 1874.CrossRefGoogle Scholar
  3. 3.
    F. Ramsteiner and W. Heckmann, Polym. Commun. 26 (1985) 199.Google Scholar
  4. 4.
    R. J. Gaymans, R. J. M. Borggreve and A. J. Oostenbrink, Makromol. Chem. Makromol. Symp. 38 (1990) 125.CrossRefGoogle Scholar
  5. 5.
    F. Speroni, E. Castoldi, P. Fabbri and T. Casiraghi, J. Mater. Sci. 24 (1989) 2165.CrossRefGoogle Scholar
  6. 6.
    A. J. Oostenbrink, K. Dijkstra, A. Van Der Wal and R. J. Gaymans, P.R.I. Churchill Conference on Deformation and Fracture of Polymers, Cambridge, April 1990, Preprints Paper 50.Google Scholar
  7. 7.
    J. W. Boode, A. E. H. Gaalman, A. J. Pijpers and R. J. M. Borggreve, poster presented at the Prague Macromolecular Meeting IUPAC Symposium “Mechansims of Polymer strength and Toughness”, Pragve, July 1990.Google Scholar
  8. 8.
    Y. K. Godovsky, in “Thermophysical Properties of Polymers” (Springer, Berlin, 1992).CrossRefGoogle Scholar
  9. 9.
    Y. K. Godovsky, V. S. Papkov, A. I. Slutsker, E. E. Tomashevskii and G. L. Slonimskii, Solid State Phys. 13 (1971) 2289.Google Scholar
  10. 10.
    R. P. Kambour and R. E. Barker, J. Polym Sci. A-2 4 (1966) 359.CrossRefGoogle Scholar
  11. 11.
    N. Levy and J. R. Rice, in “Physics of Strength and Plasticity”,edited by A. S. Argon (Massachusetts Institute of Technology Press, Cambridge, MA, 1969) p. 252, ref 8.Google Scholar
  12. 12.
    T. Fukui, Y. Kikuchi and T. Inoue, Polymer 32 (1991) 2367.CrossRefGoogle Scholar
  13. 13.
    A. R. Postema, P. Smith and A. D. English, Polym. Commun. 31 (1990) 444.Google Scholar
  14. 14.
    K. Dijkstra, A. Van Der Wal and R. J. Gaymans, J. Mater. Sci., submitted.Google Scholar
  15. 15.
    K. Dijkstra, H. H. Wevers and R. J. Gaymans, Polymer 35 (1994) 323.CrossRefGoogle Scholar
  16. 16.
    H. S. Carslaw and J. C. Jaeger, in “Conduction of Heat in Solids”, 2nd Edn (Oxford University Press, 1969 p. 254, ref 8.Google Scholar
  17. 17.
    K. Dijkstra, J. Ter Laak and R. J. Gaymans, Polymer 35 (1994) 315.CrossRefGoogle Scholar
  18. 18.
    K. Dijkstra and G. H. Ten Bolscher, J. Mater. Sci., in Press.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Dijkstra
    • 1
  • R. J. Gaymans
    • 1
  1. 1.University of TwenteAE, EnschedeThe Netherlands

Personalised recommendations