Journal of Materials Science

, Volume 29, Issue 12, pp 3224–3230 | Cite as

Characterization of milled Si3N4 powder using X-ray peak broadening and surface area analysis

  • B. Lönnberg


Si3N4 powder has been milled using a planetary ball mill. The specific surface area, crystallite size and lattice distortions were studied as a function of milling time using the Brunauer-Emmett-Teller (BET) technique and X-ray powder diffractometry. The crystallite size decreased rapidly during the first 50 h of milling. Above 170 h no further decrease of the crystallite size occurred. The smallest crystallite size obtained was 0.074 μm. Lattice distortions were small and decreased slightly during the first 50 h of milling. Specific surface area increased linearly with time. Rapid wear of the milling parts occurred during the first 50 h. Increasing the milling time produced only minor wear. The oxygen content increased linearly with milling time. Reaction with the milling fluid produced an increase in carbon content.


Polymer Milling Carbon Content Crystallite Size Oxygen Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. Richerson, “Modern Ceramic Engineering”, (Marcel Dekker, New York, 1982) p. 126.Google Scholar
  2. 2.
    G. Wötting and G. Ziegler, Interceram. 35 (1986) 32.Google Scholar
  3. 3.
    I. J. Mccolm, “Ceramic Science for Materials Technologists”, (Chapman and Hall, New York, 1983) p. 107.Google Scholar
  4. 4.
    Y. Kanno, Powder Met. 44 (1985) 93.Google Scholar
  5. 5.
    T. P. Herbell, T. K. Glasgow and N. W. Orth, Ceramic Bulletin 63 (1984) 1176.Google Scholar
  6. 6.
    T. P. Herbell, M. R. Freedman and J. D. Kiser, Ceram. Eng. Sci. Proc. 7 (1986) 817.CrossRefGoogle Scholar
  7. 7.
    M. R. Freedman, J. D. Kiser and T. P. Herbell, ibid. 6 (1985) 1124.CrossRefGoogle Scholar
  8. 8.
    L. T. Gankevich, S. G. Titov, S. L. Bochkov, K. K. Uzbekova, E. M. Cherednik and A. F. Kuteinikov, Poroshk. Metall. 9 (1987) 1.Google Scholar
  9. 9.
    K. Suzuki and Y. Kuwahara, Kona 2 (1984) 2.CrossRefGoogle Scholar
  10. 10.
    B. C. Lippens and M. E. A. Hermans, Powder Met. 7 (1961) 66.CrossRefGoogle Scholar
  11. 11.
    G. K. Williamson and W. H. Hall, Acta Met. 1 (1953) 22.CrossRefGoogle Scholar
  12. 12.
    G. K. Williamson and R. E. Smallman, Phil. Mag. 1 (1956) 34.CrossRefGoogle Scholar
  13. 13.
    M. J. Klein and P. S. Rudman, ibid. 14 (1966) 1199.CrossRefGoogle Scholar
  14. 14.
    K. R. Evans and W. F. Flanagan, ibid. 14 (1966) 1131.CrossRefGoogle Scholar
  15. 15.
    R. W. Heckel and J. L. Youngblood, J. Amer. Ceram. Soc. 51 (1967) 398.CrossRefGoogle Scholar
  16. 16.
    N. F. M. Henry, H. Lipson and W. A. Wooster, “The Interpretation of X-ray Diffraction Photographs”, (Macmillan, London, 1960) p. 212.Google Scholar
  17. 17.
    G. Ziegler, Powder Met. Int. 10 (1978) 70.Google Scholar
  18. 18.
    Idem. Keram Z. 33 (1981) 287.Google Scholar
  19. 19.
    Idem., ibid..Google Scholar
  20. 20.
    T. Ekström, C. Chatfield, W. Wruss and M. Maly-Schreiber, J. Mater. Sci. 20 (1985) 1266.CrossRefGoogle Scholar
  21. 21.
    R. D. Deslattes and A. Henins, Phys. Rev. Lett. 31 (1972) 972.CrossRefGoogle Scholar
  22. 22.
    B. Noläng, unpublished, Institute of Chemistry, University of Uppsala, (1990).Google Scholar
  23. 23.
    C. P. Gazzara and D. R. Messier, Ceramic Bulletin 56 (1977) 777.Google Scholar
  24. 24.
    G. Petzow and R. Sersale, Pure & Appl. Chem. 59 (1987) 1673.CrossRefGoogle Scholar
  25. 25.
    K. Yvon, W. Jeitschko and E. Parthe, J. Appl. Crystallogr. 10 (1977) 73.CrossRefGoogle Scholar
  26. 26.
    R. Marchand, Y. Laurent and J. Lang, Acta Cryst. 25B (1969) 2157.CrossRefGoogle Scholar
  27. 27.
    O. Borgen and H. M. Seip, Acta Chem. Scand. 15 (1961) 1789.CrossRefGoogle Scholar
  28. 28.
    H. P. Klug and L. E. Alexander, “X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials”, (Wiley, New York, 1974) p. 659.Google Scholar
  29. 29.
    E. A. Faulkner, Phil. Mag. 5 (1960) 519.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • B. Lönnberg
    • 1
  1. 1.Institute of ChemistryUniversity of UppsalaUppsalaSweden

Personalised recommendations