Advertisement

Journal of Materials Science

, Volume 29, Issue 12, pp 3200–3208 | Cite as

Ceramic joining II partial transient liquid-phase bonding of alumina via Cu/Ni/Cu multilayer interlayers

  • M. L. Shalz
  • B. J. Dalgleish
  • A. P. Tomsia
  • A. M. Glaeser
Article

Abstract

Multilayer Cu/Ni/Cu interlayers that form a thin layer of a Cu-rich transient liquid phase have been used to join alumina to alumina at 1150 °C. The method and bonding conditions yield an assembly bonded by a Ni-rich (>94 at% Ni) interlayer at a temperature substantially lower than those normally required for solid-state diffusion bonding with pure Ni interlayers. Flexure strengths of as-bonded beams ranged from 61 to 267 MPa with an average of 160 MPa and a standard deviation of ±63 MPa. The highest flexure strengths were observed in samples where failure occurred in the ceramic. Post-bonding anneals of 10 h duration in air and gettered-argon at 1000 °C decreased the average room temperature strength to 138 and 74 MPa, respectively. In as-processed and annealed samples, varying degrees of interfacial spinel formation are indicated. Spinel formation may contribute to the scatter in as-processed samples, and the decrease in strength values resulting from annealing.

Keywords

Alumina Material Processing Annealed Sample Bonding Condition Diffusion Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Suganuma, Y. Miyamoto and M. Koizumi, Ann. Rev. Mater. Sci. 18 (1988) 47.CrossRefGoogle Scholar
  2. 2.
    G. Elssner and G. Petzow, ISIJ Int. 30 (1990) 1011.CrossRefGoogle Scholar
  3. 3.
    M. G. Nicholas and D. A. Mortimer, Mater. Sci. Tech. 1 (1985) 657.CrossRefGoogle Scholar
  4. 4.
    Y. Iino, J. Mater. Sci. Lett. 10 (1991) 104.CrossRefGoogle Scholar
  5. 5.
    Y. Iino, H. Usami, M. Oshimoda and T. Saito, in Proceedings of the First Pacific Rim International Conference on Advanced Materials and Processing (PRICM-1), edited by C. Shi, H. Li and A. Scott (Minerals, Metals and Materials Society, 1992) p. 243.Google Scholar
  6. 6.
    M. L. Shalz, B. J. Dalgleish, A. P. Tomsia and A. M. Glaeser, J. Mater. Sci. 28 (1993) 1673.CrossRefGoogle Scholar
  7. 7.
    M. L. Shalz, B. J. Dalgleish, A. P. Tomsia and A. M. Glaeser, Ceram. Trans. 35 (1993) 301.Google Scholar
  8. 8.
    A. M. Glaeser, M. L. Shalz, B. J. Dalgleish and A. P. Tomsia, ibid. 34 (1993) 341.Google Scholar
  9. 9.
    M. L. Shalz, B. J. Dalgleish, A. P. Tomsia, R. M. Cannon and A. M. Glaeser, J. Mater. Sci. (in press).Google Scholar
  10. 10.
    F. P. Bailey and W. E. Borbidge, in “Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems”,edited by J. A. Pask and A. G. Evans (Plenum, New York, 1981) p. 525.CrossRefGoogle Scholar
  11. 11.
    R. V. Allen and W. E. Borbidge, J. Mater. Sci. 18 (1983) 2835.CrossRefGoogle Scholar
  12. 12.
    J. Klomp, in “Science of Ceramics”, Vol. 5, edited by C. Brosset and E. Knopp (Swedish Institute for Silicate Research, 1970) p. 501.Google Scholar
  13. 13.
    J. T. Klomp, Mater. Res. Soc. Symp. Proc. 40 (MRS, Pittsburgh, PA, 1985) 381.Google Scholar
  14. 14.
    M. Nicholas, R. R. D. Forgan and D. M. Poole, J. Mater. Sci. 3 (1968) 9.CrossRefGoogle Scholar
  15. 15.
    J. E. Ritter and M. S. Burton, Trans. AIME 239 (1967) 21.Google Scholar
  16. 16.
    Yu. V. Naidich and V. S. Zhuravlev, Refractories (USSR) 15 (1974) 55.CrossRefGoogle Scholar
  17. 17.
    R. M. Crispin and M. Nicholas, J. Mater. Sci. 11 (1976) 17.CrossRefGoogle Scholar
  18. 18.
    M. C. Gee, Brit. Ceram. Proc. 34 (1984) 261.Google Scholar
  19. 19.
    C. A. Calow and I. T. Porter, J. Mater. Sci. 6 (1971) 156.CrossRefGoogle Scholar
  20. 20.
    J. A. Wasynczuk and M. Rühle, in “Ceramic Microstructures 86”edited by J. A. Pask and A. G. Evans (Plenum, New York, 1987) p. 341.CrossRefGoogle Scholar
  21. 21.
    K. P. Trumble and M. Rühle, Acta Metall. Mater. 39 (1991) 1915.CrossRefGoogle Scholar
  22. 22.
    ASTM Publication E 1019, (ASTM, Philadelphia, PA) pp. 310–11.Google Scholar
  23. 23.
    T. B. Massalski (ed.), “Binary Alloy Phase Diagrams”, Vol. 2, (ASM International, Metals Park, Ohio, 1990) pp. 1442–6.Google Scholar
  24. 24.
    J. W. Park and C. J. Altstetter, Met. Trans. 18A (1987) 43.CrossRefGoogle Scholar
  25. 25.
    M. De Graef, B. J. Dalgleish, M. R. Turner and A. G. Evans, Acta Metall. 40 (1992) S333.CrossRefGoogle Scholar
  26. 26.
    T. C. Wilder, Trans. AIME Mater. 236 (1966) 1035.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. L. Shalz
    • 1
  • B. J. Dalgleish
    • 1
  • A. P. Tomsia
    • 1
  • A. M. Glaeser
    • 1
  1. 1.Center for Advanced Materials, Lawrence Berkeley Laboratory, and Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations