Journal of Materials Science

, Volume 29, Issue 12, pp 3185–3192 | Cite as

Fabrication and mechanical behaviour of Al2O3/Mo nanocomposites

  • M. Nawa
  • T. Sekino
  • K. Niihara


Two types of Al2O3/Mo composites were fabricated by hot-pressing a mixture of γ- or α-Al2O3 powder and a fine molybdenum powder. For Al2O3/5 vol% Mo composite using γ-Al2O3 as a starting powder, the elongated molybdenum layers were observed to surround a part of the Al2O3 grains, which resulted in an apparent high value of fracture toughness (7.1 Mpa m1/2). In the system using α-Al2O3 as a starting powder, nanometre sized molybdenum particles were dispersed within the Al2O3 grains and at the grain boundaries. Thus, it was confirmed that ceramic/metal nanocomposite was successfully fabricated in the Al2O3/Mo composite system. With increasing molybdenum content, the elongated molybdenum particles were formed at Al2O3 grain boundaries. Considerable improvements of mechanical properties were observed, such as hardness of 19.2 GPa, fracture strength of 884 MPa and toughness of 7.6 MPa m1/2 in the composites containing 5, 7.5, 20 vol% Mo, respectively; however, they were not enhanced simultaneously. The relationships between microstructure and mechanical properties are also discussed.


Microstructure Mechanical Property Al2O3 Molybdenum Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Claussen, J. Steeb and R. F. Pabst, Am. Ceram. Soc. Bull. 56 (1977) 559.Google Scholar
  2. 2.
    T. Uchiyama, K. Niihara and T. Hirai, Yogyo Kyokaishi 94 (1986) 756.CrossRefGoogle Scholar
  3. 3.
    P. F. Becher and G. C. Wei, J. Am. Ceram. Soc. 67 (1984) C267.CrossRefGoogle Scholar
  4. 4.
    K. M. Prewo, J. J. Brennan and G. K. Layden, Am. Ceram. Soc. Bull. 65 (1986) 305.Google Scholar
  5. 5.
    P. Hing, Sci. Ceram. 10 (1980) 521.Google Scholar
  6. 6.
    C. O. McHugh, T. J. Whalen and M. Humenik Jr, J. Am. Ceram. Soc. 49 (1966) 486.CrossRefGoogle Scholar
  7. 7.
    D. T. Rankin, J. J. Stiglich, D. R. Petrak and R. Ruh, ibid. 54 (1971) 277.CrossRefGoogle Scholar
  8. 8.
    Y. Naerheim, Powder Metall. Int. 18 (1986) 158.Google Scholar
  9. 9.
    S. A. Cho, M. Puerta, B. Cols and J. C. Ohep, ibid. 12 (1980) 192.Google Scholar
  10. 10.
    E. Breval, G. Dodds and C. G. Pantano, Mater. Res. Bull. 20 (1985) 1191.CrossRefGoogle Scholar
  11. 11.
    K. Niihara, A. Nakahira, T. Uchiyama and T. Hirai, in “Fracture Mechanics of Ceramics 7”, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1986) p. 103.CrossRefGoogle Scholar
  12. 12.
    K. Niihara, A. Nakahira, G. Sasaki and M. Hirabayashi, in “Proceeding of MRS Meeting on Advanced Materials” (Plenum, Tokyo, 1988) p. 129.Google Scholar
  13. 13.
    K. Niihara, J. Ceram. Soc. Jpn 99 (1991) 974.CrossRefGoogle Scholar
  14. 14.
    D. B. Marhall and A. G. Evans, J. Am. Ceram. Soc. 64 (1981) C-182.Google Scholar
  15. 15.
    Ernest M. Levin and Howard F. McMurdie, “Phase diagrams for ceramists” (American Ceramic Society, Columbus, OH, 1975) Fig. 4158.Google Scholar
  16. 16.
    T. Nose and T. Fujii, J. Am. Ceram. Soc. 71 (1988) 328.CrossRefGoogle Scholar
  17. 17.
    C. S. Smithells, “Metals References Book”, Vol. 3 (Butterworths, London, 1967) p. 917.Google Scholar
  18. 18.
    P. M. Sargent and T. F. Page, Proc. Br. Ceram. Soc. 26 (1978) 209.Google Scholar
  19. 19.
    P. E. Wierenga, A. G. Dirks and J. J. Broek, Thin Solid Films 119 (1984) 375.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Nawa
    • 1
  • T. Sekino
    • 2
  • K. Niihara
    • 2
  1. 1.Materials Research and Development LaboratoryMatsushita Electric Works LtdOsaka 571Japan
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan

Personalised recommendations