Journal of Materials Science

, Volume 29, Issue 12, pp 3113–3120 | Cite as

Preparation of YBCO-Ag composites with low carbon contents by a wet method

  • A. Mariani
  • P. L. Villa


YBa2Cu3O7-δ/Ag composites were prepared by a wet method, using readily available materials and a modification of the citrate method. This method allows for the addition of silver in soluble form to the YBCO soluble precursor and makes no use of nitrates, thus it allows for a smooth decomposition of the organic substance even in the presence of silver. After decomposition of the organic portion an effort was made to reduce the carbon content by using a gas flow containing N2 and O2 with 0.3% nitrogen oxide (NO). The carbon was substantially reduced by operating at high temperature. The pellets obtained from powder so formed were finally annealed at 950 °C in oxygen and then characterized. By increasing the temperature of the NO-anneal a greater spreading of the silver among the YBCO grains was observed. The results show that by this method it is possible to obtain composites in which the only phases detected are YBa2Cu3O7−δ and metallic silver. Although further work needs to be performed on the final products to obtain higher densities and so to obtain improved grain coupling, the data described here open a new way for the production of YBCO-Ag composites with low carbon contents.


Oxide Oxygen Polymer Nitrate Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. R. Weinberger, L. Lynds, D. M. Potrepka, D. B. Snow, C. T. Burila, H. E. Eaton Jr., R. Cipolli, Z. Tan and J. I. Budnick, Physica C 161 (1989) 91.CrossRefGoogle Scholar
  2. 2.
    L. Ganapathi, A. Kumar and J. Narayan, J. Appl. Phys. 66 (1989) 5935.CrossRefGoogle Scholar
  3. 3.
    A. Goyal, S. J. Burns and P. D. Funkenbusch, Physica C 168 (1990) 405.CrossRefGoogle Scholar
  4. 4.
    J. P. Singh, H. J. Leu, R. B. Poeppel, E. Van Voorhees, G. T. Goudey, K. Winsley and D. Shi, J. Appl. Phys 66 (1989) 3154.CrossRefGoogle Scholar
  5. 5.
    T. Nishio, Y. Itoh, F. Ogasawara, M. Suganuma, Y. Yamada and U. Mizutana, J. Mater. Sci. 24 (1989) 3228.CrossRefGoogle Scholar
  6. 6.
    B. Dwir, M. Affronte and D. Pavuna, Appl. Phys. Lett. 55 (1989) 399.CrossRefGoogle Scholar
  7. 7.
    Y. H. Kao, Y. D. Yao, L. Y. Jang, F. Xu, A. Krol, L. W. Song, C. J. Sher, A. Darovsky, J. C. Phillips, J. J. Simmins and R. L. Snyder, J. Appl. Phys. 67 (1990) 353.CrossRefGoogle Scholar
  8. 8.
    Y. Matsumoto, J. Hombo and Y. Yamaguchi, Mater. Res. Bull. 24 (1989) 1231.CrossRefGoogle Scholar
  9. 9.
    D. R. Clarke, T. M. Shaw and D. Dimos, J. Amer. Ceram. Soc. 72 (1989) 1103.CrossRefGoogle Scholar
  10. 10.
    T. L. Ward, T. T. Kodas, A. H. Carim, D. M. Kroeger and H. Hsu, J. Mater. Res. 7 (1992) 827.CrossRefGoogle Scholar
  11. 11.
    P. L. Villa, PCT patent application PCT/EP91/02404 filed on December 13 1991.Google Scholar
  12. 12.
    F. Celani, R. Messi, S. Pace and N. Sparvieri, Il Nuovo Saggiatore 4 (1988) 7.Google Scholar
  13. 13.
    P. Courty, H. Ajot, C. Marcilly and B. Delmon, Powder Technol. 7 (1973) 21.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Mariani
    • 1
  • P. L. Villa
    • 1
  1. 1.Dipartimento di Chimica Industriale e Ingegneria ChimicaPolitecnico di MilanoMilanoItaly

Personalised recommendations