Advertisement

Journal of Materials Science

, Volume 29, Issue 12, pp 3107–3112 | Cite as

Structure and mechanical properties of nanocrystalline Ag/MgO composites

  • Tokushi Kizuka
  • Hideki Ichinose
  • Yoichi Ishida
Article

Abstract

Nanocrystalline Ag/MgO composites were prepared by the ultrafine-powder-compaction method. The structure was investigated for the first time by high-resolution electron microscopy. Nanometre-sized Ag grains and MgO grains in the composites bonded directly without any intermediate phase layer. Certain preferred orientation relationships were observed between the Ag and MgO grains. The nanocrystalline Ag/MgO composites retained their grain size during annealing up to 873 K. Vickers microhardness measurements were performed on the as-compacted and annealed specimens. Generation and propagation of cracks were less active in the nanocrystalline Ag/MgO composites than in a single-phase nanocrystalline MgO. The Vickers microhardness of the nanocrystalline Ag/MgO composites remained up to 1073 K. Hot-pressing deformation tests showed that the nanocrystalline Ag/MgO composites deformed plastically at 1073 K.

Keywords

Polymer Grain Size Microscopy Electron Microscopy Mechanical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Karch, R. Birringer and H. Gleiter, Nature 330 (1989) 556.CrossRefGoogle Scholar
  2. 2.
    G. W. Nieman, J. R. Weertman and R. W. Siegel, Scripta Metall. 23 (1989) 2013.CrossRefGoogle Scholar
  3. 3.
    T. Kizuka, H. Ichinose and Y. Ishida, Philos. Mag. A 69 (1993) 551.CrossRefGoogle Scholar
  4. 4.
    J. W. Edington, K. N. Melton and C. P. Cutler, Prog. Mater. Sci. 21 (1976) 61.CrossRefGoogle Scholar
  5. 5.
    F. Wakai, S. Sakaguchi and Y. Matsuno, Adv. Ceram. Mater. 1 (1986) 259.CrossRefGoogle Scholar
  6. 6.
    H. E. Schaefer, R. Würchum, R. Birringer and H. Gleiter, Phys. Rev. B 38 (1988) 9545.CrossRefGoogle Scholar
  7. 7.
    R. W. Siegel, S. Ramaswamy, H. Hahn, Li Zongquan, Lu Ting and R. Gronsky, J. Mater. Res. 3 (1988) 1367.CrossRefGoogle Scholar
  8. 8.
    C. Kaito, K. Fujita and J. Shiojiri, J. Appl. Phys. 47 (1967) 5161.CrossRefGoogle Scholar
  9. 9.
    K. Kimoto, Y. Kamiya, M. Nonoyama and R. Uyeda, Jpn. J. Appl. Phys. 2 (1963) 702.CrossRefGoogle Scholar
  10. 10.
    T. Kizuka, Doctoral thesis, University of Tokyo, (1991).Google Scholar
  11. 11.
    T. Harada, M. Asano and Y. Mizutani, J. Cryst. Growth 116 (1992) 243.CrossRefGoogle Scholar
  12. 12.
    K. Mihama and Y. Yasuda, J. Phys. Soc. Jpn. 21 (1966) 1166.CrossRefGoogle Scholar
  13. 13.
    K. Kimoto and I. Nishida, J. Phys. Soc. Jpn. 22 (1967) 940.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Tokushi Kizuka
    • 1
  • Hideki Ichinose
    • 1
  • Yoichi Ishida
    • 1
  1. 1.Institute of Industrial ScienceUniversity of TokyoTokyoJapan

Personalised recommendations