Advertisement

Journal of Materials Science

, Volume 29, Issue 18, pp 4933–4940 | Cite as

Effect of microstructure on the fatigue strength of an austempered ductile iron

  • P. Shanmugam
  • P. Prasad Rao
  • K. Rajendra Udupa
  • N. Venkataraman
Papers

Abstract

Rotating bending fatigue tests were carried out on austempered ductile iron containing 1.5 wt% nickel and 0.3 wt% molybdenum. The ductile iron was austenitized at 900 or 1050 °C and then austempered at 280 or 400 °C for different lengths of time to obtain different microstructures. The fatigue strength was correlated with the amount of retained austenite and its carbon content, which were both determined by X-ray diffraction technique. While the tensile strength decreased with increasing retained austenite content, the fatigue strength was found to increase. Carbide precipitation was found to be detrimental to fatigue strength. Lower austenitizing temperature resulted in better fatigue strength.

Keywords

Precipitation Microstructure Fatigue Nickel Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Dodd, Mod. Casting 68 (5) (1978) 60.Google Scholar
  2. 2.
    R. B. Gundlach and J. F. Janowak, Met. Progr. 123 (1985) 119.Google Scholar
  3. 3.
    R. A. Harding and G. N. J. Gilbert, Brit. Foundryman 79 (1986) 489.Google Scholar
  4. 4.
    J. Janowak and R. Gundlach, AFS Trans. 91 (1983) 377.Google Scholar
  5. 5.
    R. A. Harding, Met. Mater. 2 (1986) 65.Google Scholar
  6. 6.
    R. C. Voigt, AFS Trans. 91 (1983) 2253.Google Scholar
  7. 7.
    Ji-Liang Doong and Shy-Ing Yu, Int. J. Fatigue 10 (1988) 219.CrossRefGoogle Scholar
  8. 8.
    M. Johansson, AFS Trans. 85 (1977) 117.Google Scholar
  9. 9.
    K. Muthukumaran, MTech thesis, Mangalore University (1990).Google Scholar
  10. 10.
    K. B. Rundman and R. C. Klug, AFS Trans. 90 (1982) 495.Google Scholar
  11. 11.
    B. D. Cullity, “Elements of X-ray diffraction” (Addison-Wesley, Reading, MA, 1974) p. 411.Google Scholar
  12. 12.
    P. Shanmugam, MTech thesis, Mangalore University (1991).Google Scholar
  13. 13.
    J. F. Janowak and P. A. Morton, Amax Report XGI-84-03, Amax Materials Research Centre, Ann Arbor, MI (1984).Google Scholar
  14. 14.
    G. E. Dieter, “Mechanical Metallurgy” (McGraw-Hill, London, 1988) p. 415.Google Scholar
  15. 15.
    R. B. Gundlach and J. F. Janowak, Amax Report XGI-84-02, Amax Materials Research Centre, Ann Arbor, MI (1984).Google Scholar
  16. 16.
    J. F. Janowak, R. B. Gundlach, G. T. Eldis and K. Rohrig, Official exchange paper, 48th International Foundry Congress, Varna, Bulgaria (1981).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Shanmugam
    • 1
  • P. Prasad Rao
    • 1
  • K. Rajendra Udupa
    • 1
  • N. Venkataraman
    • 1
  1. 1.Department of Metallurgical EngineeringKarnataka Regional Engineering CollegeSurathkal, KarnatakaIndia

Personalised recommendations