Journal of Materials Science

, Volume 29, Issue 18, pp 4927–4932 | Cite as

Characterization of the microporosity of pillared clays by nitrogen adsorption — application of the Horvath-Kawazoe approach

  • A. Gil
  • A. Díaz
  • M. Montes
  • D. R. Acosta


The microporosity of aluminium pillared montmorillonite has been investigated by nitrogen adsorption, X-ray diffraction and electron microscopy. Control of the preparation conditions allowed the synthesis of solids with two types of micropores. Comparison of XRD measurements and Horvath-Kawazoe analysis of very low-pressure nitrogen adsorption have shown a new promising way to increase the micropore characterization. Disagreement between data from different techniques could be related to the different experimental conditions during measurements and to uncertain values of the interaction parameter in the Horvath-Kawazoe analysis.


Nitrogen Polymer Aluminium Microscopy Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Pinnavaia, Science 220 (1983) 365.CrossRefGoogle Scholar
  2. 2.
    D. E. W. Vaughan, Catal. Today 2 (1988) 187.CrossRefGoogle Scholar
  3. 3.
    T. Matsuda, H. Nagashima and E. Kikuchi, Appl. Catal. 45 (1988) 171.CrossRefGoogle Scholar
  4. 4.
    M. L. Occelli, in “Keynotes in Energy-related catalysis”, Vol. 35 (1988) p. 101.CrossRefGoogle Scholar
  5. 5.
    F. Figueras, Catal. Rev. Sci. Eng. 30 (1988) 457.CrossRefGoogle Scholar
  6. 6.
    E. G. Rightor, M.-S. Tzouand T. J. Pinnavaia, J. Catal. 130 (1991) 29.CrossRefGoogle Scholar
  7. 7.
    D. M. C. Macewan and M. J. Wilson, in “Crystal Structures of Clay Minerals and their X-Ray Identification”, edited by G. W. Brindley and G. Brow (Mineralogical Society, London, 1980) p. 197.Google Scholar
  8. 8.
    S. Yamanka, T. Nishihara and M. Hattori, Mater. Chem. Phys. 17 (1987) 87.CrossRefGoogle Scholar
  9. 9.
    M. H. Stacey, Catal Today 2 (1988) 621.CrossRefGoogle Scholar
  10. 10.
    M. L. Occelli, R. A. Innes, F. S. S. Hwu and J. W. Hightower, Appl. Catal. 14 (1985) 69.CrossRefGoogle Scholar
  11. 11.
    M. Matsumoto, M. Suzuki, H. Takahashi and Y. Saito, Bull. Chem. Soc. Jpn 58 (1985) 1.CrossRefGoogle Scholar
  12. 12.
    M. S. Tzou and T. J. Pinnavaia, Catal. Today 2 (1988) 243.CrossRefGoogle Scholar
  13. 13.
    S. Yamamaka and M. Hattori, ibid. 2 (1988) 261.CrossRefGoogle Scholar
  14. 14.
    E. Kikuchi and T. Matsuda, ibid. 2 (1988) 297.CrossRefGoogle Scholar
  15. 15.
    G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn 16 (1983) 470.CrossRefGoogle Scholar
  16. 16.
    MICROMERITICS®, ASAP, 2000 User Manual (1992).Google Scholar
  17. 17.
    N. Lahav. U. Shani and J. Shabtai, Clays Clay Miner. 26 (1978) 107.CrossRefGoogle Scholar
  18. 18.
    J. Shabtai, M. Rosell and M. Tokarz, ibid. 32 (1984) 99.CrossRefGoogle Scholar
  19. 19.
    M. Tokarz and J. Shabtai, ibid. 33 (1985) 89.CrossRefGoogle Scholar
  20. 20.
    J. W. Akitt and W. Gessner, J. Chem. Soc. Dalton Trans. (1984) 147.Google Scholar
  21. 21.
    J. W. Akitt, N. N. Grenwood, B. L. Khandelwal and G. D. Lester, J. Chem. Soc. Dalton (1972) 604.Google Scholar
  22. 22.
    J. Y. Bottero, J. M. Cases, F. Fiessinger and J. E. Poirier, J. Phys. Chem. 84 (1980) 2933.CrossRefGoogle Scholar
  23. 23.
    M. L. Occelli and R. M. Tindwa, Clays Clay Miner. 31 (1983) 22.CrossRefGoogle Scholar
  24. 24.
    J. P. Sterte, ibid. 34 (1986) 658.CrossRefGoogle Scholar
  25. 25.
    M. L. Occelli and D. H. Finseth, J. Catal. 99 (1986) 316.CrossRefGoogle Scholar
  26. 26.
    S. Yamanaka, P. B. Malla and S. Komarneni, J. Coll. Intface. Sci. 134 (1990) 51.CrossRefGoogle Scholar
  27. 27.
    S. J. Gregg and K. S. W. Sing (eds), “Adsorption, Surface Area and Porosity” (Academic Press, London, 1991) p. 1.Google Scholar
  28. 28.
    J. H. DE Boer, in “The Structure and Properties of Porous Materials”, edited by D. H. Everett and F. S. Stone (Butterworths, London, 1958) p. 68.Google Scholar
  29. 29.
    M. L. Occelli, J. V. Senders and J. Lynch, J. Catal. 107 (1987) 557.CrossRefGoogle Scholar
  30. 30.
    S. M. Bradley, R. A. Kydd and R. Yamdagni, J. Chem. Soc. Dalton Trans. (1990) 2653.Google Scholar
  31. 31.
    J. Y. Bottero, M. Bruant and J. M. Cases, Clay Miner. 23 (1988) 213.CrossRefGoogle Scholar
  32. 32.
    J. Y. Bottero, J. P. Marchal, J. E. Poirier, J. Cases and F. Fiessinger, Bull. Soc. Chem. France 11–12 (1982) 1–439.Google Scholar
  33. 33.
    J. W. Akitt and A. Farthing, J. Chem. Soc. Dalton Trans. (1981) 1624.Google Scholar
  34. 34.
    H. Mori, H. Miyoshi, K. Takeda, H. Yoneyama, H. Fujita, Y. Iwata, Y. Otsuka and Y. Murata, J. Mater. Sci. 27 (1992) 3197.CrossRefGoogle Scholar
  35. 35.
    D. Plee, F. Borg, L. Gatineau and J. J. Fripiat, J. Am. Chem. Soc. 107 (1985) 2362.CrossRefGoogle Scholar
  36. 36.
    D. T. B. Tennakoon, W. Jones and J. M. Thomas, J. Chem. Soc. Farad. Trans. I 82 (1986) 3081.CrossRefGoogle Scholar
  37. 37.
    F. Tsvetkov and U. Mingelgrin, Clays Clay Miner. 38 (1990) 380.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Gil
    • 1
  • A. Díaz
    • 1
  • M. Montes
    • 1
  • D. R. Acosta
    • 2
  1. 1.Grupo de Ingeniería Química, Departamento de Química Aplicada, Facultad de Química de San SebastiánUniversidad del País VascoSan SebastianSpain
  2. 2.Instituto de FísicaUniversidad Nacional Autónoma de MexicoMexico, D.F.Mexico

Personalised recommendations