Advertisement

Journal of Materials Science

, Volume 29, Issue 18, pp 4913–4917 | Cite as

Formation and hot isostatic pressing of ZrO2 solid solution in the system ZrO2-Al2O3

  • S. Inamura
  • H. Miyamoto
  • Y. Imaida
  • M. Takagawa
  • K. Hirota
  • O. Yamaguchi
Papers

Abstract

In the system of ZrO2-Al2O3, cubic ZrO2 solid solutions containing up to 40 mol% Al2O3 crystallize at low temperatures from amorphous materials prepared by the simultaneous hydrolysis of zirconium and aluminium alkoxides. At higher temperatures, they transform into tetragonal solid solutions. Metastable ZrO2 solid solution powders containing 25 mol% Al2O3 have been sintered at 1000–1150 °C under 196 M Pausing the hot isostatic pressing technique. The solid solution ceramics consisting of homogeneous microstructure with an average grain size of ≈ 50 nm exhibited a very high fracture toughness of 23 MN m −1.5. They have been characterized by X-ray diffraction and electron probe surface analyses.

Keywords

Al2O3 Fracture Toughness Alkoxide Probe Surface Homogeneous Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Teufer, Acta Crystallogr. 15 (1962) 1187.CrossRefGoogle Scholar
  2. 2.
    D. K. Smith and C. F. Cline, J. Am. Ceram. Soc. 45 (1962) 249.CrossRefGoogle Scholar
  3. 3.
    L. H. Schoenlein, L. W. Hobbs and A. H. Heuer, Acta Crystallogr. 13 (1980) 375.Google Scholar
  4. 4.
    N. Claussen, R. Wagner, L. J. Gauckler and G. Petzon, J. Am. Ceram. Soc. 61 (1978) 369.CrossRefGoogle Scholar
  5. 5.
    A. M. Alper, in “Science of Ceramics”, Vol. 3, edited by G. H. Stewart (Academic Press, London, 1967) p. 339.Google Scholar
  6. 6.
    G. Gevales, Ber. Dtsch. Keram. Ges. 45 (1968) 216.Google Scholar
  7. 7.
    R. C. Garvie, P. H. J. Hannink and R. T. Pascoe, Nature (Lond) 258 (1975) 703.CrossRefGoogle Scholar
  8. 8.
    K. Tsukuma, K. Uedaand M. Shimada, J. Am. Ceram. Soc. 68 (1985) C-4.Google Scholar
  9. 9.
    T. Mitsuhashi, M. Ichihara and U. Tatsuke, ibid. 57 (1974) 97.CrossRefGoogle Scholar
  10. 10.
    J. E. Bailey, D. Lewis, Z. M. Librantand L. J. Porter, Trans. J. Br. Ceram. Soc. 71 (1972) 25.Google Scholar
  11. 11.
    H. Nishizawa, N. Yamasaki, K. Matsuoka and H. Mitsushio, J. Am. Ceram. Soc. 65 (1982) 343.CrossRefGoogle Scholar
  12. 12.
    K. S. Mazdiyasni, C. T. Lymch and J. S. Smith, ibid. 50 (1967) 532.CrossRefGoogle Scholar
  13. 13.
    G. Katz, J. Am. Ceram. Soc. 54 (1971) 331.CrossRefGoogle Scholar
  14. 14.
    Powder Diffraction File, Card No. 13-307. Joint Committee on powder Diffraction Standards, Swarthmore, PA (1972).Google Scholar
  15. 15.
    R. C. Garvie and P. S. Nicolson, J. Am. Ceram. Soc. 55 (1972) 303.CrossRefGoogle Scholar
  16. 16.
    H. Toraya, M. Yoshimura and S. Somiya, ibid. 67 (1989) C-119.Google Scholar
  17. 17.
    K. Niihara, R. Morena and D. P. H. Hasselman, J. Mater. Sci. Lett. 1 (1982) 13.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. Inamura
    • 1
  • H. Miyamoto
    • 1
  • Y. Imaida
    • 2
  • M. Takagawa
    • 2
  • K. Hirota
    • 2
  • O. Yamaguchi
    • 2
  1. 1.Osaka Prefectural Institute of Industrial TechnologyOsakaJapan
  2. 2.Faculty of EngineeringDoshisha UniversityKyotoJapan

Personalised recommendations