Journal of Materials Science

, Volume 29, Issue 18, pp 4889–4896 | Cite as

The morphology and microtexture of M7C3 carbides in Fe-Cr-C and Fe-Cr-C-Si alloys of near eutectic composition

  • G. L. F. Powell
  • R. A. Carlson
  • V. Randle


The microtexture of M7C3 carbides in undercooled 40 g samples of hyper- and hypo-eutectic Fe-Cr-C alloys was determined by electron back scatter diffraction. In the hyper-eutectic alloy the carbides were monocrystalline, while those in the hypo-eutectic alloy were polycrystalline. While in the former the preferred growth direction of the M7C3 carbides was [0001], in the hypo-eutectic alloy there was a relatively weak texture near [10¯11]. There was no evidence for the presence of growth twins in either the M7C3 carbide rods or in the branching mechanism in the joint between the carbide rods of the hypo-eutectic sample. The morphologies of the M7C3 carbides resulting from undercooling were used to explain the microstructure of hardfacing Fe-Cr-C weld deposits applied by the manual metal arc process. The effect of silicon additions on the morphology of M7C3 carbides in Fe-Cr-C-Si alloys is explained in terms of the effect of silicon on undercooling.


Polymer Silicon Microstructure Carbide Growth Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. E. Diesburg and F. Borik, Symposium “Materials for the Mining Industry” ed. R. G. Barr, 1974, Climax Molybdenum, Vail, USA, p. 15.Google Scholar
  2. 2.
    ASTM A532-87, Standard Specification for Abrasion-Resistant Cast Irons.Google Scholar
  3. 3.
    “Metals handbook”, 9th Edn, Vol. 6 (Welding, Brazing, and Soldering, ASM OH, 1983) p. 779.Google Scholar
  4. 4.
    ibid. p.776.Google Scholar
  5. 5.
    “Fractographic atlas of steel weldments” (Japan Welding Society, 1982) p. 234.Google Scholar
  6. 6.
    G. L. F. Powell, Australian Welding Research 6 (1979) 16.Google Scholar
  7. 7.
    G. L. F. Powell, J. Mater. Sci. Lett. 10 (1991) 745.CrossRefGoogle Scholar
  8. 8.
    S. Atamert and H. K. D. H. Bhadeshia, “Proc. of heat treatment 87” (Institute of Metals, London, 1988) p. 39.Google Scholar
  9. 9.
    S. Atamert and H. K. D. H. Bhadeshia, “Recent trends in welding science and technology TWR '89”, edited by S. A. David and J. M. Vitek (ASM International, Materials Park, USA, 1990) p. 273.Google Scholar
  10. 10.
    G. L. F. Powell, Mater. Trans. JIM 31 (1990) 110.CrossRefGoogle Scholar
  11. 11.
    V. Randle and G. L. F. Powell, J. Mater. Sci. Lett. 12 (1993) 779.CrossRefGoogle Scholar
  12. 12.
    G. L. F. Powell and L. S. Heard, Trans. Jpn Inst. Metals 22 (1981) 543.CrossRefGoogle Scholar
  13. 13.
    R. Elliott, “Eutectic solidification processing” (Butterworths, London, 1983) p. 85.Google Scholar
  14. 14.
    J. V. Milewski, F. D. Gac, J. J. Petrovic and S. R. Skraggs, J. Mater. Sci. 20 (1985) 1160.CrossRefGoogle Scholar
  15. 15.
    Y. Matsubara, K. Ogi and K. Matsuda, AFS Trans. 1989 (1981) 183.Google Scholar
  16. 16.
    K. Ogi, Y. Matsubara and K. Matsuda, ibid., 197.Google Scholar
  17. 17.
    L. E. Svensson, B. Gretoft, B. Ulander and H. K. D. H. Bhadeshia, J. Mater. Sci. 21 (1986) 1015.CrossRefGoogle Scholar
  18. 18.
    G. Laird and G. L. F. Powell, Metall. Trans. 24A (1993) 981.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • G. L. F. Powell
    • 1
  • R. A. Carlson
    • 1
  • V. Randle
    • 2
  1. 1.CSIRO Division of Manufacturing TechnologyWoodville
  2. 2.Department of Materials EngineeringUniversity College of SwanseaSingleton ParkUK

Personalised recommendations