Journal of Materials Science

, Volume 29, Issue 18, pp 4883–4888 | Cite as

Conversion mechanism of perhydropolysilazane into silicon nitride-based ceramics

  • O. Funayama
  • Y. Tashiro
  • A. Kamo
  • M. Okumura
  • T. Isoda


The pyrolysis of perhydropolysilazane in anhydrous ammonia has been studied up to 1000 °C through the analysis of the gas phase and the characterization of the solid residue by thermogravimetric analysis, Fourier transform-infrared analysis. X-ray photoelectron spectroscopy, X-ray diffraction and 29Si cross-polarization magic angle spinning-nuclear magnetic resonance. The pyrolysis mechanism involves three main steps: (1) below 400 °C, evaporation of residual solvent; (2) from 400–600 °C, reaction with ammonia leading to an increase of nitrogen content and formation of preceramic polymer-ceramics intermediate solid with a three-dimensional network; (3) from 600–1000 °C, completion of the formation of an amorphous hydrogenated solid with composition close to silicon nitride.


Silicon Ammonia Evaporation Pyrolysis Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Funayama, M. Arai, Y. Tashiro, H. Aoki, T. Suzuki, K. Tamura, H. Kaya, H. Nishii and T. Isoda, J. Ceram. Soc. Jpn 98 (1990) 104.CrossRefGoogle Scholar
  2. 2.
    G. E. Legrow, T. F. Lim, J. Lipowitz and R. S. Reaoch, Am. Ceram. Soc. Bull. 66 (1987) 363.Google Scholar
  3. 3.
    D. Seyferth and G. H. Wiseman, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley-Interscience, New York, 1984) p. 265.Google Scholar
  4. 4.
    K. B. Schwartz, D. J. Rowcliffe, Y. D. Blum and R. M. Laine, in “Proceedings of the Materials Research Society Symposium”, Palo Alto, April 1986, edited by C. Brinker, D. Clark, and D. Ulrich (Materials Research Society, Pittsburg, PA, 1986) p. 407.Google Scholar
  5. 5.
    D. Seyferth, G. H. Wiseman and C. Prud'homme, J. Am. Ceram. Soc. 66 (1983) C 13.CrossRefGoogle Scholar
  6. 6.
    S. Yajima, J. Hayashi and M. Omori, Chem. Lett. (9) (1975) 931.Google Scholar
  7. 7.
    S. Yajima, K. Okamura, J. Hayashi and M. Omori, J. Am. Ceram. Soc. 59 (1976) 324.CrossRefGoogle Scholar
  8. 8.
    R. West, in “Ultrastructure Processing of Ceramics, Glasses, and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley-Interscience, New York, 1984) p. 235.Google Scholar
  9. 9.
    R. H. Baney, J. H. Gaul Jr and T. K. Hilty, in “Emergent Process Methods for High-Technology Ceramics”, edited by R. F. Davis, H. Palmour III and R. L. Porter (Plenum Press, New York, 1984) p. 253.CrossRefGoogle Scholar
  10. 10.
    D. J. Carlsson, J. D. Cooney, S. Gauthier and D. J. Worsfold, J. Am. Ceram. Soc. 73 (1990) 237.CrossRefGoogle Scholar
  11. 11.
    K. Sato, T. Suzuki, O. Funayama and T. Isoda, J. Ceram. Soc. Jpn 100 (1992) 444.CrossRefGoogle Scholar
  12. 12.
    Y. Hasegawa and K. Okamura, J. Mater. Sci. 24 (1983) 3633.CrossRefGoogle Scholar
  13. 13.
    T. Taki, M. Inui, K. Okamura and M. Sato, J. Mater. Sci. Lett. 8 (1989) 918.CrossRefGoogle Scholar
  14. 14.
    G. D. Soraru, F. Babonneau and J. D. Mackenzie, J. Non-Cryst. Solids 106 (1988) 256.CrossRefGoogle Scholar
  15. 15.
    F. Babonneau, in “Inorganic and Organometallic Polymers with Special Properties”, edited by R. M. Laine (Kluwer Academic, The Netherlands, 1992) p. 347.CrossRefGoogle Scholar
  16. 16.
    E. Bouillon, F. Langlais, R. Pailler, R. Naslain, F. Cruege, P. V. Huong, J. C. Sarthou, A. Delpuech, C. Laffon, P. Lagarde, M. Monthioux and A. Oberlin, J. Mater. Sci. 26 (1991) 1333.CrossRefGoogle Scholar
  17. 17.
    N. Kawamura and T. Isoda, JETI 38 (8) (1990) 104.Google Scholar
  18. 18.
    T. Isoda, H. Kaya, M. Arai, H. Nishii, O. Funayama, Y. Tashiro, T. Suzuki, H. Aoki, M. Ichiyama, T. Kato, I. Koshi and K. Sato, in “Proceedings of the Ist Japan International SAMPE Symposium and Exhibition”, Chiba, November, 1989, edited by N. Igata, I Kimpara, T. Kishi, E. Nakata, A. Okura, and T. Uryu, p. 912.Google Scholar
  19. 19.
    T. Isoda, in “Proceedings of the 3rd International Conference on Composite Interfaces (ICCI-III): Controlled Interface Structure, 1990”, Cleveland, May 1990, edited by H. Ishida (Elsevier Science, New York, 1990) p. 255.Google Scholar
  20. 20.
    Y. Yokoyama, T. Nanba, I. Yasui, H. Kaya, T. Maeshima and T. Isoda, J. Am. Ceram. Soc. 74 (1991) 654.CrossRefGoogle Scholar
  21. 21.
    T. Isoda, Y. Tashiro, O. Funayama and T. Kato, in “Mukikoubunshi 1”, edited by M. Kajiwara and K. Murakami (Sangyo Tosyo, Tokyo, 1992) p. 123.Google Scholar
  22. 22.
    S. Prochazka and C. Creskovich, Am. Ceram. Soc. Bull. 57 (1978) 578.Google Scholar
  23. 23.
    N. Wada, S. A. Solin, J. Wong and S. Prochazka, J. Non-Cryst. Solids 43 (1981) 7.CrossRefGoogle Scholar
  24. 24.
    K. R. Carduner, R. O. Carter III, M. E. Milberg and G. M. Crosbie, Anal. Chem. 59 (1987) 2794.CrossRefGoogle Scholar
  25. 25.
    T. Goto, F. Itoh, K. Suzuki and T. Hirai, J. Mater. Sci. Lett. 2 (1983) 805.CrossRefGoogle Scholar
  26. 26.
    H. Du, R. E. Tresseler, K. E. Spear and C. G. Pantano, J. Electrochem. Soc. 136 (1989) 1527.CrossRefGoogle Scholar
  27. 27.
    T. Taki, K. Okamura and M. Sato, J. Mater. Sci. Lett. 8 (1989) 1119.CrossRefGoogle Scholar
  28. 28.
    G. T. Burns and G. Chandra, J. Am. Ceram. Soc. 72 (1989) 333.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • O. Funayama
    • 1
  • Y. Tashiro
    • 1
  • A. Kamo
    • 1
  • M. Okumura
    • 1
  • T. Isoda
    • 1
  1. 1.Corporate Research and Development LaboratoryTonen CorporationSaitamaJapan

Personalised recommendations