Journal of Materials Science

, Volume 29, Issue 18, pp 4875–4882 | Cite as

Effects of mechanical pressure on charge transport in some ferrocene derivatives in the presence of adsorbed vapours

  • A. Bhattacharjee
  • B. Mallik


The change in adsorption-induced electrical conductivity of some ferrocene derivatives as a function of temperature has been studied under moderate pressures. At a constant cell temperature, the conductivity of the pure ferrocene derivatives in the dry state depends on the applied pressure and this pressure dependence of conductivity is significantly different for different materials. A spectacular change in the electrical conductivity behaviour of these materials at the vapour-adsorbed state, as a function of temperature under mechanical pressure, has been observed. Pressure-induced change in conductivity of different ferrocene derivatives at the vapour-adsorbed state is remarkably different. The results have been discussed in the light of different existing theories. The unusual variation of conductivity with temperature under pressure is thought to be due to the phase transition in these materials.


Polymer Phase Transition Electrical Conductivity Ferrocene Applied Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. F. Turner, I. Karube and G. S. Wilson,“Biosensors” (Oxford University Press, Oxford, New York, Tokyo, 1987).Google Scholar
  2. 2.
    X. B. Wang, C. D'silva and R. Pethig, J. Mol. Electron. 6 (1990) 129.Google Scholar
  3. 3.
    M. H. Smit and A. E. G. Cass, Anal. Chem. 62 (1990) 2429.CrossRefGoogle Scholar
  4. 4.
    B. W. Rockett and G. Marr, J. Organomet. Chem. 416 (1991) 327.CrossRefGoogle Scholar
  5. 5.
    C. E. Carraher, J. E. Sheets and C. U. Pittman, “Advances in Organometallic and Inorganic Polymer Science” (Marcel Dekker, New York, Basel, 1982).Google Scholar
  6. 6.
    Y. Okamoto, J. Y. Chang and M. A. Kantor, J. Chem. Phys. 41 (1964) 4010.CrossRefGoogle Scholar
  7. 7.
    A. V. Maksimuchev, V. A. Zhorin, A. T. Ponomerenko and N. S. Enikolopjan, Dokl. Phys. Chem. Akad. Nauk SSSR 241 (1978) 593.Google Scholar
  8. 8.
    B. Karvaly, B. Mallik and G. Kemeny, J. Mater. Sci. Lett. 4 (1985) 912.CrossRefGoogle Scholar
  9. 9.
    A. Bhattacharjee and B. Mallik, ibid. 11 (1992) 35.CrossRefGoogle Scholar
  10. 10.
    Idem, J. Mater. Sci. 27 (1992) 5877.CrossRefGoogle Scholar
  11. 11.
    B. Mallik and A. Bhattacharjee, J. Phys. Chem. Solids 50 (1989) 1113.CrossRefGoogle Scholar
  12. 12.
    A. Bhattacharjee and B. Mallik, Bull. Chem. Soc. Jpn 64 (1991) 3129.CrossRefGoogle Scholar
  13. 13.
    K.-J. Euler, R. Kirchhoff and H. Metzendorf, Mater. Chem. 4 (1979) 611.CrossRefGoogle Scholar
  14. 14.
    T. N. Misra, B. Rosenberg and R. Switzer, J. Chem. Phys. 48 (1968) 2096.CrossRefGoogle Scholar
  15. 15.
    B. Mallik, A. Ghosh and T. N. Misra, Proc. Indian Acad. Sci. (Part I) 88A (1979) 25.Google Scholar
  16. 16.
    Idem, Bull. Chem. Soc. Jpn 52 (1979) 2091.CrossRefGoogle Scholar
  17. 17.
    H. Watanabe, I. Motoyama and K. Hata, ibid. 39 (1965) 850.CrossRefGoogle Scholar
  18. 18.
    B. Karvaly, B. Mallik and G. Kemeny, J. Chem. Soc. Farad. Trans, 1 81 (1985) 1939.CrossRefGoogle Scholar
  19. 19.
    G. A. Samara and H. G. Drickamer, J. Chem. Phys. 37 (1962) 474.CrossRefGoogle Scholar
  20. 20.
    H. A. Pohl, A. Rembaum and A. Henry, J. Am. Chem. Soc. 8 (1962) 2699.CrossRefGoogle Scholar
  21. 21.
    M. R. Boon, Phys. Status Solidi (b) 51 (1972) K55.CrossRefGoogle Scholar
  22. 22.
    A. K. Bandopadhay, S. Chatterjee, S. V. Subramanyan and B. R. Bulka, Mater. Sci. 7 (1981) 97.Google Scholar
  23. 23.
    M. Batley and L. E. Lyons, Aust. J. Chem. 19 (1966) 345.CrossRefGoogle Scholar
  24. 24.
    B. Rosenberg, T. N. Misra and R. Switzer, Nature 217 (1968) 5127.CrossRefGoogle Scholar
  25. 25.
    H. G. Drickamer and C. W. Frank, “Electronic Transition and the High Pressure Chemistry of Solids” (Chapman and Hall, London, 1973) p. 100.CrossRefGoogle Scholar
  26. 26.
    F. Gutmann and L. E. Lyons, “Organic Semiconductor”, Part A (Wiley, New York, 1967) p. 497.Google Scholar
  27. 27.
    E. Postow and B. Rosenberg, Bioenergetics 1 (1970) 467.CrossRefGoogle Scholar
  28. 28.
    M. F. Daniel, A. J. Leadbetier and M. A. Majid, J. Chem. Soc. Farad. Trans. 2 77 (1981) 1837.CrossRefGoogle Scholar
  29. 29.
    K. Sato, M. Katada, H. Sano and M. Konno, Bull. Chem. Soc. Jpn 57 (1984) 2361.CrossRefGoogle Scholar
  30. 30.
    K. Iwai, M. Katada, I. Motoyama and H. Sano, ibid. 60 (1987) 1961.CrossRefGoogle Scholar
  31. 31.
    M. F. Daniel, A. J. Leadbetier, R. E. Meads and W. G. Erker, J. Chem. Soc. Farad. Trans. 2 74 (1978) 456.CrossRefGoogle Scholar
  32. 32.
    F. Gutmann, H. Keyzer and L. E. Lyons, “Organic Semiconductor”, Part B (Krieger, Malabar, FL, 1983) p. 219.Google Scholar
  33. 33.
    J. C. Medina, C. Li, S. G. Bott, J. L. Atwood and G. W. Gokel, J. Am. Chem. Soc. 113 (1991) 366.CrossRefGoogle Scholar
  34. 34.
    F. M. Colombo, C. D. Rau and V. A. Parsegian, Science 256 (1992) 655.CrossRefGoogle Scholar
  35. 35.
    F. P. Bundy, Phys. B 139/140 (1986) 390.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Bhattacharjee
    • 1
  • B. Mallik
    • 1
  1. 1.Department of SpectroscopyIndian Association for the Cultivation of ScienceJadavpur, CalcuttaIndia

Personalised recommendations