Journal of Materials Science

, Volume 29, Issue 18, pp 4866–4874 | Cite as

Evolution of the microstructure of undoped and Nb-doped SrTiO3

  • S. G. Cho
  • P. F. Johnson


Undoped and Nb-doped SrTiO3 specimens with excess titania compositions were prepared by sintering in air at 1420 or 1480 °C. Large grains due to liquid-phase sintering were obtained for undoped specimens containing ⩾ 0.6 mol % excess titania and fired at 1480 °C. On the other hand uniform fine grains were observed for samples fired at 1420 °C, resulting from grain-growth inhibition due to exsolved TiO2 second phase. The solubility of excess titania seemed less than 0.2 mol% under our experimental conditions. The microstructural behaviour of Nb-doped SrTiO3 could be explained well by the Sr-vacancy compensation model. According to this model, the solubility of excess titania in SrTiO3 increased with Nb2O5 dopant concentration. Thus, for specimens which had high excess titania compositions and were sintered at 1480 °C, large grains were observed when the Nb content was low enough to retain sufficient excess titania-forming liquid phase. For specimens having the same compositions and fired at 1420 °C, uniform fine grains were obtained due to grain growth inhibition by the exsolved TiO2 second phase, when the Nb content was low. If the excess titania was less than the solubility determined by the amount of Nb dopant, Ruddlesden-Popper-type phases were believed to be formed and resulted in poor densification. Although excess titania was the major factor in determining the grain size of the specimens, the niobium dopant enhanced grain growth.


Grain Size Microstructure TiO2 Titania Liquid Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Goodman, in “Advances in Ceramics”, Vol. 1, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Westerville, Ohio, 1981) p. 215.Google Scholar
  2. 2.
    N. Yamaoka and T. Matsui, ibid. p. 232.Google Scholar
  3. 3.
    H. D. Park and D. A. Payne ibid. p. 242.Google Scholar
  4. 4.
    V. W. R. Amarakoon, PhD thesis, University of Illinois-Urbana Champaign (1980).Google Scholar
  5. 5.
    M. S. Wrighton, A. B. Ellis, P. T. Wolczanski, D. L. Morse, H. B. Abrahamson and D. S. Ginley, J. Amer. Chem. Soc. 98 (1976) 2774.CrossRefGoogle Scholar
  6. 6.
    T. Seiyama, H. Arai, H. Niita and K. Yasugata, Japanese Patent 60225051 (1985).Google Scholar
  7. 7.
    N. H. Chan, R. K. Sharma and D. M. Smyth, J. Electrochem. Soc. 128 (1981) 1762.CrossRefGoogle Scholar
  8. 8.
    S. Witek, D. M. Smyth and H. Pickup, J. Amer. Ceram. Soc. 67 (1984) 372.CrossRefGoogle Scholar
  9. 9.
    N. G. Eror and U. Balachandran, J. Solid State Chem. 42 (1982) 227.CrossRefGoogle Scholar
  10. 10.
    Idem, ibid. 40 (1981) 85.CrossRefGoogle Scholar
  11. 11.
    G. H. Jonker, Solid State Electronics 7 (1964) 895.CrossRefGoogle Scholar
  12. 12.
    W. Heywang, J. Mater. Sci. 6 (1971) 1214.CrossRefGoogle Scholar
  13. 13.
    R. Wernicke, Phys. Status Solidi (a) 47 (1978) 139.CrossRefGoogle Scholar
  14. 14.
    M. Kahn, J. Amer. Ceram. Soc. 54 (1971) 452.CrossRefGoogle Scholar
  15. 15.
    T. Murakami, T. Miyashita, M. Nakahara and E. Sekine, ibid. 56 (1973) 294.CrossRefGoogle Scholar
  16. 16.
    M. Drofenik, A. Popovic and D. Kolar, Amer. Ceram. Soc. Bull. 63 (1984) 702.Google Scholar
  17. 17.
    K. Lubitz, in “Sintering — Theory and Practice”, Proceedings of 5th International Round Table Conference on Sintering, Portorž, Yugoslavia, 7–10 September 1981, p. 343.Google Scholar
  18. 18.
    I. Burn and S. Neirman, J. Mater. Sci. 17 (1982) 3510.CrossRefGoogle Scholar
  19. 19.
    M. Raymond, MS thesis, Alfred University (1987).Google Scholar
  20. 20.
    N. Stenton and M. P. Harmer, in “Advances in Ceramics”, Vol. 7, edited by M. F. Yan and A. H. Heuer (American Ceramic Society, Westerville, Ohio, 1983) p. 156.Google Scholar
  21. 21.
    R. Wernicke, in “Advances in Ceramics”, Vol. 1, edited by L. M. Levinson and D. C. Hill (American Ceramic Society, Westerville, Ohio, 1981) p. 261.Google Scholar
  22. 22.
    M. P. Pechini, US Patent 3 330 697 (1967).Google Scholar
  23. 23.
    S. G. Cho, P. F. Johnson and R. A. Condrate Sr, J. Mater. Sci. 25 (1990) 4738.CrossRefGoogle Scholar
  24. 24.
    E. Underwood, “Quantitative Stereology” (Addison-Wesley, New York, 1970) p. 23.Google Scholar
  25. 25.
    M. I. Mendelson, J. Amer. Ceram. Soc. 52 (1969) 443.CrossRefGoogle Scholar
  26. 26.
    ASTM C373-72, “Water Absorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity of Fired Whiteware Products” (ASTM, Philadelphia, 1972).Google Scholar
  27. 27.
    E. M. Levin, C. R. Robbins and H. F. McMurdie, “Phase Diagrams for Ceramists” (American Ceramic Society, Westerville, Ohio, 1964) Figs 297, 298 and 1969 Supplement Fig. 2334.Google Scholar
  28. 28.
    U. Balachandran and N. G. Eror, J. Electrochem. Soc. 129 (1982) 1021.CrossRefGoogle Scholar
  29. 29.
    S. N. Ruddlesden and P. Popper, Acta. Crystallogr. 11 (1958) 54.CrossRefGoogle Scholar
  30. 30.
    K. R. Udayakumar and A. N. Cormack, J. Phys. Chem. Solids. 50 (1989) 55.CrossRefGoogle Scholar
  31. 31.
    A. E. Paladino, J. Amer. Ceram. Soc. 48 (1965) 476.CrossRefGoogle Scholar
  32. 32.
    S. G. Cho and P. F. Johnson, Ferroelectrics 132 (1992) 115.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. G. Cho
    • 1
  • P. F. Johnson
    • 2
  1. 1.Department of Electronic Materials EngineeringGyeongsang National UniversityChinju, GyeongnamKorea
  2. 2.NYS College of CeramicsAlfred UniversityAlfredUSA

Personalised recommendations