Journal of Materials Science

, Volume 29, Issue 18, pp 4860–4865 | Cite as

Microstructure of mechanically alloyed Al-In alloys

  • K. Uenishi
  • H. Kawaguchi
  • K. F. Kobayashi


Mechanical alloying (MA) starting from elemental powder mixtures was performed on immiscible Al-10, 30 and 50 at % In alloys. Al and In were finely mixed with increasing MA time and the crystal size of each element became up to 40 nm after MA for 1152 ks. With refinement of the structure, the hardness increased up to 120 Hv in Al-10 at % In alloy, a value larger than that obtained from the rule of mixtures. The melting temperature of In was recognized, by thermal analyses, to fall by about 3 K for mechanically alloyed Al-In alloy, showing the possibility of forming f.c.t In supersaturated solid solution. A new endothermal peak around 420 K, which corresponded with the melting temperature of metastable f.c.c. In, was recognized for mechanically alloyed Al-50 at % In alloy.


Polymer Microstructure Solid Solution Thermal Analysis Melting Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Benjamin, Metall. Trans, 1 (1970) 2943.Google Scholar
  2. 2.
    P. S. Jilman and J. S. Benjamin, Ann. Rev. Mater. Sci. 13 (1983) 1791.Google Scholar
  3. 3.
    K. F. Kobayashi, N. Tachibana and P. H. Shingu, J. Mater. Sci. 25 (1990) 3149.CrossRefGoogle Scholar
  4. 4.
    M. V. Zdujic, K. F. Kobayashi and P. H. Shingu, ibid. 26 (1991) 5502.CrossRefGoogle Scholar
  5. 5.
    C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough, Appl. Phys. Lett. 43 (1983) 1017.CrossRefGoogle Scholar
  6. 6.
    R. B. Schwarz, R. R. Petrich and C. K. Saw, J. Non-Cryst. Solids 76 (1985) 281.CrossRefGoogle Scholar
  7. 7.
    R. B. Schwarz and C. C. Koch, Appl. Phys. Lett. 49 (1986) 146.CrossRefGoogle Scholar
  8. 8.
    E. Gaffet, Mater. Sci. Eng. A134 (1991) 1380.CrossRefGoogle Scholar
  9. 9.
    K. Uenishi, K. F. Kobayashi, K. N. Ishihara and P. H. Shingu, ibid. A134 (1991) 1342.CrossRefGoogle Scholar
  10. 10.
    K. Uenishi, K. F. Kobayashi, S. Nasu, H. Hatano, K. N. Ishihara and P. H. Shingu, Z. Metallkde 83 (2) (1992) 132.Google Scholar
  11. 11.
    K. Uenishi, K. F. Kobayashi, K. N. Ishihara and P. H. Shingu, Mater. Sci. Forum 88–90 (1992) 459.CrossRefGoogle Scholar
  12. 12.
    J. L. Murray, in “Binary Alloy Phase Diagrams,” Vol. 1 (American Society for Metals, Ohio, 1983) p. 121.Google Scholar
  13. 13.
    A. K. Niessen, F. R. De Boer, R. Boom, P. F. De Chatel, W. C. M. Mattens and A. R. Miedema, CALPHAD 7 (1) (1983) 51.CrossRefGoogle Scholar
  14. 14.
    B. D. Culity, in “Elements of X-ray diffraction” (Addision-Wesley, Massachusetts, USA, 1987) p. 102.Google Scholar
  15. 15.
    C. C. Koch, J. S. C. Jang and S. S. Gross, J. Mater. Res. 4 (1989) 557.CrossRefGoogle Scholar
  16. 16.
    G. L. Allen, R. A. Bayles, W. W. Gile and W. A. Jesser, Thin Solid Films 144 (1986) 297.CrossRefGoogle Scholar
  17. 17.
    H. Saka, J. Jpn Inst. Met. 31 (9) (1992) 204.Google Scholar
  18. 18.
    L. Kaufman, J. Nell, K. Taylor and F. Hayes, CALPHAD 5 (3) (1981) 185.CrossRefGoogle Scholar
  19. 19.
    J. M. Silcock, J. Inst. Met. 84 (1955) 19.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. Uenishi
    • 1
  • H. Kawaguchi
    • 1
  • K. F. Kobayashi
    • 1
  1. 1.Department of Welding and Production EngineeringOsaka UniversityOsakaJapan

Personalised recommendations