Journal of Materials Science

, Volume 29, Issue 18, pp 4847–4851 | Cite as

Properties of mechanochemically pretreated precursors of doped BaTiO3 ceramics

  • P. Baláž
  • J. Briančin
  • Z. Bastl
  • L. Medvecký
  • V. Šepelák


The properties of doped BaTiO3 ceramics prepared from mechanically activated precursors (BaCO3, TiO2, PbO), dopant (Sb) and admixtures (SiO2, Al2O3) were investigated. Mechanical activation of the mixture 1.00 BaCO3 + 1.15 TiO2 + 0.10 PbO brings about an increase in its specific surface and partial amorphization of BaCO3; Ba, O and C occur in the surface of this mixture in at least two chemically different states. BaTiO3 obtained from the above mentioned mechanically activated precursors by high-temperature solid-state synthesis at 1100 ° C consists of homogeneous particles with a narrow particle size distribution.


Polymer Particle Size TiO2 SiO2 Al2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. S. Galasso, “Structure and Properties of Inorganic Solids” (Pergamon, Oxford, 1977) p. 168.Google Scholar
  2. 2.
    H. Ueoka, Ferroelectrics 7 (1974) 251.CrossRefGoogle Scholar
  3. 3.
    A. E. Ringwood, S. E. Kesson, N. G. Ware, W. O. Hibberson and A. Major, Geochem. J. 13 (1979) 14.CrossRefGoogle Scholar
  4. 4.
    T. Yamaguchi, S. H. Cho, H. Nagai and H. Kuno, in “Reactivity of Solids”, Proceedings of 8th International Symposium Göteborg 1976, edited by J. Wood, O. Lindqvist, C. Helgesson and N. -G. Vannerberg (Plenum, New York 1977) p. 701.Google Scholar
  5. 5.
    G. Pfaff, Cryst. Res. Technol. 26 (1991) 305.CrossRefGoogle Scholar
  6. 6.
    K. Tkáčová, “Mechanical Activation of Minerals” (Elsevier, Amsterdam, 1989) p. 70.Google Scholar
  7. 7.
    P. Baláž, Z. Bastl, J. Briančin, I. Ebert and J. Lipka, J. Mater. Sci. 27 (1992) 653.CrossRefGoogle Scholar
  8. 8.
    P. Baláž, E. Post and Z. Bastl, Thermochim. Acta 200 (1992) 371.CrossRefGoogle Scholar
  9. 9.
    H. W. Hennicke and J. Stein, Mater. Sci Engng A 109 (1989) 3.CrossRefGoogle Scholar
  10. 10.
    N. Števulová and K. Tkáčová, Ceramics-Silikáty 36 (1992) 109.Google Scholar
  11. 11.
    V. V. Zyrjanov, V. F. Sysojev and V. V. Boldyrev, Dokl. Akad. nauk SSSR 300 (1988) 162.Google Scholar
  12. 12.
    V. V. Zyrjanov, in “Mechanochemical Synthesis in Inorganic Chemistry”, edited by E. G. Avvakumov (Nauka, Novosibirsk, 1991) p. 102 (in Russian).Google Scholar
  13. 13.
    T. Havlík, M. ŠKrobian and F. Petričko, Ceramics-Silikáty 37 (1993) 127.Google Scholar
  14. 14.
    R. A. Nyquist and R. O. Kagel, “Infrared Spectra of Inorganic Compounds” (Academic, New York, 1971) p. 221.Google Scholar
  15. 15.
    S. Myhra, J. C. Riviere, A. M. Stewart and P. C. Healy, J. Phys. B-Cond. Matter 72 (1988) 413.CrossRefGoogle Scholar
  16. 16.
    D. Majumdar, D. Chatterjee and G. Pav-Pujalt, J. Phys. C 158 (1989) 413.CrossRefGoogle Scholar
  17. 17.
    Y. Fukuda, M. Nogoshi, T. Suzuki, Y. Namba, Y. Syono and M. Tachiki, Phys. Rev. B 39 (1989) 1496.Google Scholar
  18. 18.
    D. E. Fowler, C. R. Brundle, J. Lerczak and F. Holtzberger, J. Electron Spectrosc. Relat Phenom 52 (1990) 323.CrossRefGoogle Scholar
  19. 19.
    J. D. Scofield, ibid. 46 (1988) 31.CrossRefGoogle Scholar
  20. 20.
    T. Matsui, T. Kato, T. Omika and K. Okano, J. Ceram. Soc. Jpn 98 (1990) 941.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Baláž
    • 1
  • J. Briančin
    • 2
  • Z. Bastl
    • 3
  • L. Medvecký
    • 2
  • V. Šepelák
    • 1
  1. 1.Institute of Geotechnic of the Slovak Academy of SciencesKošiceSlovakia
  2. 2.Institute of Material Research of the Slovak Academy of SciencesKošiceSlovakia
  3. 3.J. Heyrovsky-lnstitute of Physical Chemistry and Electrochemistry of the Czech Academy of SciencesPrahaCzech Republic

Personalised recommendations