Advertisement

Journal of Materials Science

, Volume 29, Issue 18, pp 4840–4846 | Cite as

Thermal stability of interfaces in Ti-6Al-4V reinforced by SiC Sigma fibres

  • C. Badini
  • M. Ferraris
  • F. Marchetti
Papers

Abstract

Interfacial reactions in Ti-6Al-4V/SiC Sigma fibres (coated with carbon and TiB2) were studied at different temperatures (600, 700 and 1000 °C). Interface microstructure was investigated by scanning electron microscopy and Auger electron spectroscopy. A simulation of the chemical phenomena occurring at the interfaces was carried out using powders of pure titanium, carbon and TiB2; the reaction products were identified by X-ray diffraction. The double coating of Sigma fibres is effective in delaying detrimental reactions with the matrix. At the interfaces matrix/TiB2 and TiB2/C, the TiB and TiCx phases form, respectively. The protective coating of fibres shows a lifetime greater than 1000 and 750 h at 600 and 700 °C, respectively.

Keywords

Polymer Microstructure Microscopy Electron Microscopy Scanning Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. Kieschke, R. E. Somekh and T. W. Clyne, Acta Metall. Mater. 39 (1991) 427.CrossRefGoogle Scholar
  2. 2.
    E. P. Zironi and H. Poppa, J. Mater. Sci. 16 (1981) 3115.CrossRefGoogle Scholar
  3. 3.
    P. Martineau, R. Pailler, M. Lahaye and R. Naslain, ibid. 19 (1984) 2749.CrossRefGoogle Scholar
  4. 4.
    H. J. Dudek, R. Leucht and G. Ziegler, in “Titanium Science and Technology”, Proceedings of the Fifth International Conference on Titanium, Munich, 10–14 September, 1984, edited by G. Lutjering, U. Zwicker and W. Bunk, Vol. 3 (Society for Advanced Materials and Processing Engineering, Covina, CA, 1984) p. 1773.Google Scholar
  5. 5.
    T. Onzawa, A. Suzumura and J. H. Kim, in “Proceedings of the International Conference on Composite Materials-ICCM/8” Honolulu, 14–17 July 1991 (USA) paper 19-J-5.Google Scholar
  6. 6.
    W. J. Whatley and F. E. Wanner, J. Mater. Sci. Lett. 4 (1985) 173.CrossRefGoogle Scholar
  7. 7.
    W. D. Brewer and J. Unnam, NASA Technical paper 2066 (1982).Google Scholar
  8. 8.
    I. W. Hall, J. L. Lirn and J. Rizza, J. Mater. Sci. Lett. 10 (1991) 263.CrossRefGoogle Scholar
  9. 9.
    P. Martineau, M. Lahaye, R. Pailler, R. Naslain, M. Couzi and F. Cruege, J. Mater. Sci. 19 (1984) 2731.CrossRefGoogle Scholar
  10. 10.
    R. Pailler, P. Martineau, M. Lahaye and R. Naslain, Rev. Chemi. Minèrale 18 (1981) 520.Google Scholar
  11. 11.
    C. G. Rhodes and R. Spurling, in “Recent Advances in Composites in the United States and Japan”, edited by J. R. V. Taya and M. Taya, ASTM-STP864 (American Society for Testing and Materials, Philadelphia, PA, 1985) pp. 585–99.Google Scholar
  12. 12.
    C. Jones, C. J. Kiely and S. S. Wang, J. Mater. Res. 4 (1989) 327.CrossRefGoogle Scholar
  13. 13.
    Idem, ibid. 5 (1990) 1435.CrossRefGoogle Scholar
  14. 14.
    P. R. Smith, F. H. Froes and J. T. Cammett, in “Metallurgical and tensile property analysis of several silicon carbide/titanium composite systems”, Proceedings of the International Conference on Mechanical Behaviour of Metal Matrix Composites, Dallas, 16–18 February 1982, edited by W. D. Brewer and J. Unnam (The Metallurgical Society AIME Warrendale, PA, 1983) p. 143.Google Scholar
  15. 15.
    N. A. James, D. J. Lovett and C. M. Warwick, in “Proceedings of the International Conference on Composite Materials (ICCM/8)”, edited by S. W. Tsai and G. S. Springer, Stanford University (USA), Honolulu, 14–17 July 1991 (Society for Advanced Materials and Processing Engineering, Covina, CA, 1991) paper 19-1-1.Google Scholar
  16. 16.
    M. Ferraris, C. Badini, F. Marino, F. Marchetti and S. Girardi, J. Mater. Sci. 28 (1993) 1983.CrossRefGoogle Scholar
  17. 17.
    Z. X. Guo, B. Derby and B. Cantor, J. Microsc. submitted.Google Scholar
  18. 18.
    J. Thebault, R. Pailler, G. Bintemps-Moley, M. Bourdeau and R. Naslain, J. Less Common Metals 47 (1976) 221.CrossRefGoogle Scholar
  19. 19.
    J. W. Steeds and C. G. Rhodes, J. Am. Ceram. Soc. 68 (1985) C-136.CrossRefGoogle Scholar
  20. 20.
    P. Appending, Metall. Ital. 80 (1988) 39.Google Scholar
  21. 21.
    J. L. Murray, “Phase diagram of binary titanium alloys” (ASM, Metals Park, OH, 1987).Google Scholar
  22. 22.
    M. C. Schouler, M. Ducarroir and C. Bernard, Rev. Int. Haut. Temper. Refract. Fr. 20 (1983) 261.Google Scholar
  23. 23.
    S. S. Ordanyan, V. I. Unrod and A. I. Avgustinik, Porosk. Metall. 9 (1975) 40.Google Scholar
  24. 24.
    G. V. Samsonov, Vopr. Poroshkovoi Met. Prochnosti Mater. Akaud Nauk URR SSR 7 (1959) 72.Google Scholar
  25. 25.
    F. W. Glaser, Trans. AIME, J. Metals, 194 (1952) 391.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. Badini
    • 1
  • M. Ferraris
    • 1
  • F. Marchetti
    • 2
  1. 1.Dipartimento di Scienza dei Materiali e Ingegneria ChimicaPolitecnico di TorinoTorinoItaly
  2. 2.Divisione Scienza dei Materiali, Loc. Pantè di PovoIRSTTrentoItaly

Personalised recommendations