Advertisement

Journal of Materials Science

, Volume 29, Issue 18, pp 4824–4833 | Cite as

Densification and mechanical properties of shock-treated alumina and its composites

  • M. Bengisu
  • O. T. Inal
Papers

Abstract

The effects of shock treatment and consolidation method on densification behaviour and mechanical properties of Al2O3, Al2O3-ZrO2, Al2O3-SiC (whisker), and Al2O3-ZrO2-SiC (whisker) have been studied. It was established that shock treatment does not improve the sintering kinetics of alumina or alumina-based composites. On the other hand, partial shock compaction followed by sintering provided higher densities compared to sintering alone. Unshocked and pressureless sintered materials possessed better mechanical properties than shock-treated materials, in general. No significant difference was noted in the mechanical properties of hot-pressed Al2O3-ZrO2 composites with regard to shock treatment. Improved mechanical properties were occasionally found in shock-treated and hot-pressed whisker-reinforced alumina, although a direct relationship with shock pressure was not observed. The improvement was attributed to decreased whisker aspect ratios upon shock treatment, leading to enhanced microstructural uniformity.

Keywords

Alumina Mechanical Property Al2O3 Aspect Ratio Compaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wang and R. Stevens, J. Mater. Sci. 24 (1990) 3421.CrossRefGoogle Scholar
  2. 2.
    F. F. Lange and M. M. Hirlinger, J. Am. Ceram. Soc. 67 (1984) 164.CrossRefGoogle Scholar
  3. 3.
    R. Duclos, J. Crampon and B. Cales, Ceram. Int. 18 (1992) 57.CrossRefGoogle Scholar
  4. 4.
    S. Iio, M. Watanabe, M. Matsubara and Y. Matsuo, J. Am. Ceram. Soc. 72 (1989) 1880.CrossRefGoogle Scholar
  5. 5.
    P. F. Becher, C. H. Hsueh, P. Angelini and T. N. Tiegs, ibid. 71 (1988) 1050.CrossRefGoogle Scholar
  6. 6.
    E. A. Holm and M. J. Cima, ibid. 72 (1989) 303.CrossRefGoogle Scholar
  7. 7.
    M. Ruhle, N. Claussen and A. H. Heuer, ibid. 69 (1986) 195.CrossRefGoogle Scholar
  8. 8.
    T. N. Tiegs and P. F. Becher, Am. Ceram. Soc. Bull. 66 (1987) 339.Google Scholar
  9. 9.
    V. K. Sarin and M. Ruhle, Composites 18 (1987) 129.CrossRefGoogle Scholar
  10. 10.
    T. S. Yen and J. K. Guo, in “Advances in Ceramics”, Vol. 24, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto, and H. Yanagida (American Ceramic Society, Westerville, OH, 1988) pp. 573–582.Google Scholar
  11. 11.
    L. Bjork and A. G. Hermansson, J. Am. Ceram. Soc. 72 (1989) 1436.CrossRefGoogle Scholar
  12. 12.
    H. W. Lee and M. D. Sacks, Ceram. Eng. Sci. Proc. 10 (1989) 720.CrossRefGoogle Scholar
  13. 13.
    M. Lee and M. P. Borom, Adv. Ceram. Mater. 3 (1988) 38.CrossRefGoogle Scholar
  14. 14.
    M. Bengisu and O. T. Inal, Ceram. Int. 17 (1991) 187.CrossRefGoogle Scholar
  15. 15.
    T. T. Meek, R. D. Blake and J. J. Petrovic, Ceram. Eng. Sci. Proc. 8 (1987) 861.CrossRefGoogle Scholar
  16. 16.
    O. R. Bergmann and J. Barrington, J. Am. Ceram. Soc. 49 (1966) 502.CrossRefGoogle Scholar
  17. 17.
    E. K. Beauchamp, in “High Pressure Explosive Processing of Ceramics”, edited by R. A. Graham and A. B. Sawaoka (Trans Tech, Switzerland, 1987) pp. 141–174.Google Scholar
  18. 18.
    R. R. Garcia, “Dispersion of Oxide Powders in Organic Liquids”, Ceramic Processing Research Laboratory Report No. 11, Jan. 1982, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  19. 19.
    S. L. Wang, PhD thesis, New Mexico Institute of Mining and Technology, Socorro, NM (1986).Google Scholar
  20. 20.
    D. W. Richerson, “Modern Ceramic Engineering” (Marcel Dekker, New York, NY, 1982).Google Scholar
  21. 21.
    H. Toraya, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc. 67 (1984) C-119.Google Scholar
  22. 22.
    P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc. 64 (1981) 539.CrossRefGoogle Scholar
  23. 23.
    M. V. Swain and N. Claussen, J. Am. Ceram. Soc. 66 (1983) C-27.CrossRefGoogle Scholar
  24. 24.
    F. F. Lange, ibid. 66 (1983) 396.CrossRefGoogle Scholar
  25. 25.
    F. F. Lange, B. I. Davis and I. A. Aksay, ibid. 66 (1983) 407.CrossRefGoogle Scholar
  26. 26.
    T. H. Hare, K. L. More, A. D. Batchelor and H. Palmour III, in “Materials Science Research”, Vol. 16, “Sintering and Heterogeneous Catalysis”, edited by G. C. Kuczynski, A. E. Miller and G. A. Sargent (Plenum Press, New York, NY, 1984) pp. 265–279.Google Scholar
  27. 27.
    S. Wu, E. Gilbart and R. J. Brook, in “Advances in Ceramics”, Vol. 10, “Structure and Properties of MgO and Al2O3 Ceramics”, edited by W. D. Kingery (American Ceramic Society, Columbus, OH, 1984) pp. 574–582.Google Scholar
  28. 28.
    F. F. Lange, in “Defect Properties of High Technology Nonmetallic Materials”, edited by J. H. Crawford Jr, Y. Chen and W. A. Sibley (Elsevier Science, New York, NY, 1984) pp. 247–54.Google Scholar
  29. 29.
    M. Bengisu and O. T. Inal, J. Am. Ceram. Soc. 73 (1990) 346.CrossRefGoogle Scholar
  30. 30.
    M. Bachaus-Ricoult, ibid. 74 (1991) 1793.CrossRefGoogle Scholar
  31. 31.
    S. T. Buljan, A. E. Pasto and H. J. Kim, Am. Ceram. Soc. Bull 68 (1989) 387.Google Scholar
  32. 32.
    N. Claussen, J. Steeb and R. F. Pabst, ibid. 56 (1977) 559.Google Scholar
  33. 33.
    N. Claussen, J. Am. Ceram. Soc. 74 (1991) 1793.CrossRefGoogle Scholar
  34. 34.
    M. Bengisu and O. T. Inal, ibid. submitted.CrossRefGoogle Scholar
  35. 35.
    N. Claussen, K. L. Weisskope and M. Ruhle, ibid. 69 (1986) 288.CrossRefGoogle Scholar
  36. 36.
    M. Bohmer and E. A. Almond, Mater. Sci. Eng. A105/106 (1988) 105.CrossRefGoogle Scholar
  37. 37.
    A. C. Soloman, W. Reichert, V. Rondinella, L. Esposito and E. Toscano, J. Am. Ceram. Soc. 73 (1990) 740.CrossRefGoogle Scholar
  38. 38.
    E. Lucchini and S. Maschio, J. Mater. Sci. Lett. 9 (1990) 417.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Bengisu
    • 1
  • O. T. Inal
    • 1
  1. 1.Materials and Metallurgical Engineering DepartmentNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations