Advertisement

Journal of Materials Science

, Volume 29, Issue 18, pp 4802–4807 | Cite as

Martensitic transformation of γ-Fe precipitates in a Cu 1.5 at % Fe Alloy

  • V. M. H. Lopez
  • K. Hirano
Papers

Abstract

In the present work, the mechanism of martensitic transformation, the influence of γ-Fe particle size on the martensitic transformation induced by cold working, and the transformation of γ-Fe into α-Fe by thermal treatment alone in a Cu-1.5 at% Fe alloy, was studied using field ion microscopy (FIM) and transmission electron microscopy (TEM). It has been found that γ-Fe precipitates smaller than about 10 nm did not transform martensitically to α-Fe by cold working. Precipitates larger than 10 nm adopted a Kurdjumov-Sachs orientation relationship with the copper matrix; and the martensitically transformed α-Fe precipitates were ellipsoidal in shape, with their major axes being oriented parallel to the 〈1 1 0〉 direction in the matrix. Dislocations were found in the matrix near the vicinity of transformed α-Fe precipitates, giving support to the dislocation cutting mechanism proposed by other workers for the transformation. In thermally aged alloys, no transformation of γ-Fe to α-Fe was observed during the coarsening of γ-Fe precipitates up to sizes as large as about 50 nm. These precipitates still remained coherent or semi-coherent with the copper matrix.

Keywords

Polymer Copper Particle Size Microscopy Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Denney, Acta. Metall. 4 (1956) 586.CrossRefGoogle Scholar
  2. 2.
    K. E. Easterling and H. M. Miekk-Oja, ibid. 15 (1967) 1133.CrossRefGoogle Scholar
  3. 3.
    K. E. Easterling and G. C. Weatherly, ibid. 17 (1969) 845.CrossRefGoogle Scholar
  4. 4.
    K. E. Easterling and P. R. Swann, ibid. 19 (1971) 117.CrossRefGoogle Scholar
  5. 5.
    H. Kubo, Y. Uchimoto and K. Shimizu, Metal Sci. 9 (1975) 51.CrossRefGoogle Scholar
  6. 6.
    K. R. Kinsman, J. W. Sprys and R. Asaro, Acta. Metall. 23 (1975) 1443.CrossRefGoogle Scholar
  7. 7.
    S. Saji, S. Hori and G. Mima, Trans. J. Int. Met. 14 (1973) 82.Google Scholar
  8. 8.
    M. Kato, R. Monzen and T. Mori, Acta. Metall. 26 (1978) 605.CrossRefGoogle Scholar
  9. 9.
    I. Ishida and M. Kiritani, Trans. J. Int. Met. 27 (1986) 561.Google Scholar
  10. 10.
    Idem., Acta. Metall. 36 (1988) 2129.CrossRefGoogle Scholar
  11. 11.
    Y. Watanabe and A. Sato, Scripta. Metall. 23 (1989) 359.CrossRefGoogle Scholar
  12. 12.
    H. Wendt and R. Wagner, Acta. Metall. 30 (1982) 1561.CrossRefGoogle Scholar
  13. 13.
    Y. Yuchi, M. Wada and T. Mori, J. de Physique C7 (1986) 41.Google Scholar
  14. 14.
    M. Wada, Y. Yuchi, R. Uemori, M. Tamino and T. Mori, Acta Metall. 36 (1988) 333.CrossRefGoogle Scholar
  15. 15.
    R. Waner, Crystals-Growth, Properties and Applications, Vol. 6, (Springer Verlag, Berlin, 1982) p. 31.Google Scholar
  16. 16.
    F. M. Ashby and L. M. Brown, Phil. Mag. 8 (1963) 1083.CrossRefGoogle Scholar
  17. 17.
    Y. Watanabe, Y. Takada, M. Kato and S. Sato, in Proceedings of the Fall Meeting of the Japan Institute of Metals, October 1989, (edited by Institute of Metals of Japan, 1989) p. 415.Google Scholar
  18. 18.
    D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, (Van Nostrand Reinhold, Holland, 1981) p. 401.Google Scholar
  19. 19.
    G. Kurdjumov and G. Sachs, Z. Phys. 64 (1930) 325.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • V. M. H. Lopez
    • 1
  • K. Hirano
    • 2
  1. 1.Instituto Politecnico NacionalESIQIEMexico, D.F.
  2. 2.Department of Materials ScienceThe University of TohokuSendaiJapan

Personalised recommendations