Journal of Materials Science

, Volume 29, Issue 18, pp 4793–4801 | Cite as

Pull-out of a ductile fibre from a brittle matrix

Part I Shear lag model
  • Chun-Hway Hsueh


Pull-out of a ductile fibre from a brittle matrix has been analysed using a shear lag model. Debonding at the fibre-matrix interface and yielding of the fibre occurred during the pull-out process. Both Poisson's contraction of the fibre and Coulomb friction of the debonded interface were considered. The debond length, which consists of an elastic zone length and a plastic zone length, was also analysed. When the fibre has a finite embedded length, it was found that necking prior to full pull-out of the fibre was required to optimize the toughening of a brittle matrix due to plastic deformation of the fibres. The essential material properties to achieve this are addressed.


Brittle Plastic Deformation Material Property Plastic Zone Coulomb Friction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hing and G. W. Groves, J. Mater. Sci. 1 (1972) 427.CrossRefGoogle Scholar
  2. 2.
    V. V. Kristic, P. S. Nicholson and R. G. Hoagland, J. Am. Ceram. Soc. 64 (1981) 499.CrossRefGoogle Scholar
  3. 3.
    D. Han and J. J. Mecholsky, J. Mater. Sci. 25 (1990) 4949.CrossRefGoogle Scholar
  4. 4.
    L. S. Sigl and H. E. Exner, Metall. Trans. 18A (1987) 1299.CrossRefGoogle Scholar
  5. 5.
    F. Erdogan and P. F. Joseph, J. Am. Ceram. Soc. 72 (1989) 262.CrossRefGoogle Scholar
  6. 6.
    H. E. Deve, A. G. Evans, G. R. Odette, R. Mehrabian, M. L. Emiliani and R. J. Hecht, Acta Metall. Mater 38 (1990) 1491.CrossRefGoogle Scholar
  7. 7.
    L. Xiao and R. Abbaschian, Mater. Sci. Eng. A155 (1992) 135.CrossRefGoogle Scholar
  8. 8.
    T. C. Lu, A. G. Evans, R. J. Hecht and R. Mehrabian, Acta Metall Mater. 39 (1991) 1853.CrossRefGoogle Scholar
  9. 9.
    M. Bannister and M. F. Ashby, ibid. 39 (1991) 2575.CrossRefGoogle Scholar
  10. 10.
    M. F. Ashby, F. J. Blunt and M. Bannister, ibid. 37 (1989) 1847.CrossRefGoogle Scholar
  11. 11.
    M. Bannister, H. Shercliff, B. Gao, F. Zok and M. F. Ashby, ibid. 40 (1992) 1531.CrossRefGoogle Scholar
  12. 12.
    J. Bowling and G. W. Groves, J. Mater. Sci. 14 (1979) 431.CrossRefGoogle Scholar
  13. 13.
    Idem, ibid. 14 (1979) 443.CrossRefGoogle Scholar
  14. 14.
    H. C. Cao, B. J. Dalgleish, H. E. Deve, C. Elliott, A. G. Evans, R. Mehrabian and G. R. Odette, Acta Metall. Mater. 37 (1989) 2969.CrossRefGoogle Scholar
  15. 15.
    H. E. Deve and M. J. Maloney, ibid. 39 (1991) 2275.CrossRefGoogle Scholar
  16. 16.
    H. L. Cox, Br. J. Appl. Phys. 3 (1952) 72.CrossRefGoogle Scholar
  17. 17.
    P. Lawrence, J. Mater. Sci. 7 (1972) 1.CrossRefGoogle Scholar
  18. 18.
    A. Takaku and R. G. C. Arridge, J. Phys. D Appl. Phys. 6 (1973) 2038.CrossRefGoogle Scholar
  19. 19.
    M. R. Piggott, “Load Bearing Fiber Composites” (Pergamon Press, Elmsford, NY, 1980) p. 62.CrossRefGoogle Scholar
  20. 20.
    B. Budiansky, J. W. Hutchinson and A. G. Evans, J. Mech. Phys. Solids 34 (1986) 167.CrossRefGoogle Scholar
  21. 21.
    Y. C. Gao, Y. W. Mai and B. Cotterell, J. Appl. Math. Phys. (ZAMP) 39 (1988) 550.CrossRefGoogle Scholar
  22. 22.
    D. K. Shetty, J. Am. Ceram. Soc. 71 (1988) C107.CrossRefGoogle Scholar
  23. 23.
    R. J. Kerans and T. A. Parthasarathy, ibid. 74 (1991) 1585.CrossRefGoogle Scholar
  24. 24.
    C. H. Hsueh, Mater. Sci. Eng. A125 (1990) 67.CrossRefGoogle Scholar
  25. 25.
    Idem, ibid. A154 (1992) 125.CrossRefGoogle Scholar
  26. 26.
    P. A. Mataga, Acta Metall. 37 (1989) 3349.CrossRefGoogle Scholar
  27. 27.
    W. C. Carter, E. P. Butler and E. R. Fuller v, Scripta Metall. Mater. 25 (1991) 579.CrossRefGoogle Scholar
  28. 28.
    P. D. Jero and R. J. Kerans, ibid. 24 (1990) 2315.CrossRefGoogle Scholar
  29. 29.
    T. J. Mackin, P. D. Warren and A. G. Evans, Acta Metall. Mater. 40 (1992) 1251.CrossRefGoogle Scholar
  30. 30.
    J. P. Outwater and M. C. Murphy, in “Proceedings of the 24th Annual Technical Conference of Reinforced Plastic Composites Division”, (The Society of the Plastics Industry Inc., New York, 1969) p. 11c.Google Scholar
  31. 31.
    J. W. Hutchinson and H. M. Jensen, Mech. Mater. 9 (1990) 139.CrossRefGoogle Scholar
  32. 32.
    C. H. Hsueh, Mater. Sci. Eng. A145 (1990) 135.Google Scholar
  33. 33.
    C. H. Hsueh, Mater. Sci. Eng. A123 (1990) 1.CrossRefGoogle Scholar
  34. 34.
    R. Hill, “The Mathematical Theory of Plasticity” (Clarendon Press, Oxford, 1950).Google Scholar
  35. 35.
    C. H. Hsueh and A. G. Evans, J. Am. Ceram. Soc. 68 (1985) 120.CrossRefGoogle Scholar
  36. 36.
    C. H. Hsueh and P. F. Becher, ibid. 71 (1988) C438.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Chun-Hway Hsueh
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations