Journal of Materials Science

, Volume 29, Issue 18, pp 4771–4777 | Cite as

Microstructure and growth of electrodeposited nanocrystalline nickel foils

  • Á. Cziráki
  • B. Fogarassy
  • I. Geröcs
  • E. Tóth-Kádár
  • I. Bakonyi


In the present work, the structure of electrodeposited pure Ni foils has been investigated by X-ray diffractometry, transmission electron microscopy and by measuring their electrical transport properties. It was found that the as-deposited Ni foils have a nanocrystalline structure covered by a thin amorphous Ni layer on the substrate side: the growth of the electrodeposited foils starts in amorphous form followed by nanocrystalline layers. To explain the formation of the amorphous Ni layer, it is supposed that foreign atoms are incorporated into the nucleating Ni films.


Microstructure Nickel Transmission Electron Microscopy Transport Property Electrical Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Gleiter, Progr. Mater. Sci. 33 (1989) 223.Google Scholar
  2. 2.
    K. L. Merkle and D. J. Smith, Phys. Rev. Lett. 59 (1987) 2887.CrossRefGoogle Scholar
  3. 3.
    G. Wallner, E. Jorra, H. Franz, J. Peisl, R. Birringer, H. Gleiter, T. Haubold and W. Petry, Mater. Res. Soc. Symp. proc. 132 (1989) 149.CrossRefGoogle Scholar
  4. 4.
    E. Jorra, H. Franz, J. Peisl, G. Wallner, W. Petry, R. Birringer, H. Gleiter and T. Haubold, Philos. Mag. B 60 (1989) 159.CrossRefGoogle Scholar
  5. 5.
    X. Zhu, R. Birringer, U. Herr and H. Gleiter, Phys. Rev. B 35 (1987) 9085.CrossRefGoogle Scholar
  6. 6.
    T. Haubold, R. Birringer, R. Lengeler and H. Gleiter J. Less-Common Metals. 145 (1988) 557.CrossRefGoogle Scholar
  7. 7.
    G. J. Thomas, R. W. Siegel and J. A. Eastman, Scripta Metall Mater. 24 (1990) 201.CrossRefGoogle Scholar
  8. 8.
    M. R. Fitzsimmons, J. A. Eastman, M. Müllerstach and G. Wallner, Phys. Rev. B 44 (1991) 2452.CrossRefGoogle Scholar
  9. 9.
    J. A. Eastman, M. R. Fitzsimmons, M. Müllerstach, G. Wallner and W. T. Elam, Nanostruct. Mater. 1 (1992) 47.CrossRefGoogle Scholar
  10. 10.
    J. A. Eastman, M. R. Fitzsimmons and L. J. Thompson, Phil. Mag. B 66 (1992) 667.CrossRefGoogle Scholar
  11. 11.
    H. Maead, Jpn. J. Appl. Phys. 8 (1969) 978.CrossRefGoogle Scholar
  12. 12.
    S. Kaja, H. W. Pickering and W. R. Bitler, Plat. Surf. Fin. 73 (1) (1986) 58.Google Scholar
  13. 13.
    G. Palumbo, D. M. Doyle, A. M. El-sherik, U. Erb and K. T. Aust, Scripta Metall. Mater. 25 (1991) 679.CrossRefGoogle Scholar
  14. 14.
    I. Bakonyi, E. Tóth-Kádár, T. Tarnóczi, L. K. Varga, Á. Cziráki, I. Geröcs and B. Fogarassy, Nanostruct. Mater. 3, (1994) 155.CrossRefGoogle Scholar
  15. 15.
    E. Tóth-Kádár, I. Bakonyi, A. Sólyom, J. Hering, G. Konczos and F. Pavlyák, Surf. Coat. Technol. 31 (1987) 31.CrossRefGoogle Scholar
  16. 16.
    E. Tóth-Kádár, Hungarian Patent 195 982 (1984).Google Scholar
  17. 17.
    M. J. Laubitz, T. Matsumura and P. J. Kelly, Can. J. Phys. 54 (1976) 92.CrossRefGoogle Scholar
  18. 18.
    I. A. Campbell and A. Fert, in “Ferromagnetic Materials”, Vol. 3, edited by E. P. Wohlfarth (North-Holland, Amsterdam, 1982) p. 747.Google Scholar
  19. 19.
    M. C. Cadeville and C. Lerner, Phil. Mag. 33 (1976) 801.CrossRefGoogle Scholar
  20. 20.
    J. H. Mooij, Phys. Status Solidi (a) 17 (1973) 521.CrossRefGoogle Scholar
  21. 21.
    U. Pittermann and S. Ripper, in “Rapidly Quenched Metals”, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985) p. 385.CrossRefGoogle Scholar
  22. 22.
    J. G. Wright, IEEE Trans. Magn. MAG-12 (1976) 95.CrossRefGoogle Scholar
  23. 23.
    Idem, Inst. Phys. Conf. Series No. 30 (1977) 251.Google Scholar
  24. 24.
    S. Nakahara and E. C. Felder, J. Electrochem. Soc. 129 (1882) 45.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Á. Cziráki
    • 1
  • B. Fogarassy
    • 1
  • I. Geröcs
    • 1
  • E. Tóth-Kádár
    • 2
  • I. Bakonyi
    • 2
  1. 1.Institute for Solid State PhysicsEötvös UniversityBudapestHungary
  2. 2.Research Institute for Solid State PhysicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations