Advertisement

Journal of Materials Science

, Volume 29, Issue 18, pp 4742–4749 | Cite as

Al-V-graphite interface reactions: an XAFS study of the reactions in a composite interface system

  • E. V. Barrera
  • C. Uslu
Papers
  • 42 Downloads

Abstract

The high temperature reaction properties of a metal matrix composite interface have been observed in this research by X-ray reflectivity and X-ray absorption fine structure (XAFS) coupled to Auger electron spectroscopy (AES). This study was taken from the vantage point of the vanadium diffusion barrier interfacial layer in a model aluminum-graphite metal-matrix laminate composite. The interfacial couple of aluminum and vanadium was analysed to ascertain the reaction species at temperatures between 200 and 350 °C. X-ray reflectivity and glancing angle XAFS showed that the initial Al-V reaction occurred at 325 °C where the aluminum-rich intermetallic Al3V formed. Small angle XAFS was used to analyse the higher temperature interfacial changes in the temperature range of 300–500 °C. Further interactions occurred at 500 °C, where interdiffusion of Al, C and O occurred leading to phase formation of the vanadium, dependent on the graphite basal plane orientation. AES, used to determine the initial compositions and those resulting from the high temperature heat treatments, complemented the XAFS results.

Keywords

Vanadium Laminate Composite Auger Electron Spectroscopy Temperature Heat Treatment High Temperature Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Mathis, Thin Film Evaporation Source Reference, R. D. Mathis cat., (R. D. Mathis Co., Long Beach, CA, 1993).Google Scholar
  2. 2.
    E. V. Barrera, Benji Maruyama and J. E. Benci, Adv. Compos. Mater., Ceram. Trans. 19 (1991) 1035.Google Scholar
  3. 3.
    Benji Maruyama, E. V. Barrera, R. K. Everett, W. M. Henshaw and S. M. Heald, in Proceedings on Controlled Interfaces in Composites, the 3rd International Conference on Composite Interfaces (ICCI-III), edited by H. Ishida (Elsevier, Amsterdam, 1990) p. 175.Google Scholar
  4. 4.
    L. G. Parratt, Phys. Rev. 95 (1954) 359.CrossRefGoogle Scholar
  5. 5.
    S. M. Heald and J. M. Tranquada, in “Physical methods of chemistry”, edited by B. W. Rossiter and J. F. Hamilton (Wiley, New York, 1990) p. 189.Google Scholar
  6. 6.
    S. M. Heald and E. V. Barrera, J. Mater. Res. 6 (1991) 935.CrossRefGoogle Scholar
  7. 7.
    G. E. Bacon, “Neutron diffraction”, 2nd Edn (Oxford University Press, London, 1962).Google Scholar
  8. 8.
    T. T. Mickle, E. V. Barrera, W. E. Frazier and J. E. Talia, in Proceedings of the Symposium on Melt Spinning, edited by E. F. Matthys (TMS, San Diego, CA, 1992) p. 183.Google Scholar
  9. 9.
    H. Chen and S. M. Heald, J. Appl. Phys. 66 (1989) 1793.CrossRefGoogle Scholar
  10. 10.
    H. Chen, PhD thesis, City University of New York, New York, USA (1989).Google Scholar
  11. 11.
    Benji Maruyama, F. S. Ohuchi and L. Rabenberg, J. Mater. Sci. Lett. 9 (1990) 864.CrossRefGoogle Scholar
  12. 12.
    J. E. Talia, T. T. Mickle, W. E. Frazier and E. V. Barrera, in Proceedings on Developments in Ceramic and Metal Matrix Composites, edited by K. Upadhya (TMS, San Diego, CA, 1992) p. 157.Google Scholar
  13. 13.
    S. U. Campisano, G. Foti, E. Rimini, S. S. Lau and J. W. Mayer, Phil. Mag. 31 (1975) 903.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • E. V. Barrera
    • 1
  • C. Uslu
    • 1
  1. 1.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA

Personalised recommendations