Journal of Materials Science

, Volume 29, Issue 18, pp 4678–4682 | Cite as

Crystallization kinetics of J-1 polymer under different thermal treatments

  • L. Fambri
  • S. D. Incardona
  • C. Migliaresi
  • G. Marom


A bis-para-amino cyclohexylmethane (PACM)-based polyamide homopolymer (J-1 polymer produced by Du Pont), utilized as a matrix for composites, was subjected to different thermal treatments in order to investigate its crystallization thermodynamics and crystallization kinetics. Various J-1 samples, quenched, annealed from the glassy state, isothermally crystallized from the melt and slowly cooled, were studied by differential scanning calorimetry (DSC). A thermodynamic melting temperature of 352.6 °C was determined from a Hoffman-Weeks diagram of polymer samples annealed at different temperatures between the glass transition and melting temperature. By using DSC isothermal crystallization data from the melt, the existence of two crystallization regimes, already found in a previous investigation, was confirmed, and a transition temperature between the two regimes, equal to 262.2 °C was determined, in good agreement with 260.5 °C, obtained by depolarized light measurements, reported elsewhere. Moreover, the ratio between the crystallization kinetics factor of two crystallization regimes is 1.87, very close to the value of 2 predicted by the Huffman theory. Crystallization of samples from the melt, at different cooling rates, was also performed. The Arrhenius plot of data indicated that the crystallization process proceeds with two distinct activation energies (589 and 244 kJ mol−1), below or above a cooling rate of 2.67 °C min−1, corresponding to a temperature of 253.9 °C. This result is in good agreement with the two crystallization regimes reported above.


Crystallization Differential Scanning Calorimetry Thermal Treatment Cooling Rate Arrhenius Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Migliaresi, A. De Lollis, L. Fambri and D. Cohn, Clin. Mater. 8 (1991) 111.CrossRefGoogle Scholar
  2. 2.
    S. W. Shalaby, in “Thermal characterization of polymeric materials”, edited by E. A. Turi (Academic Press, Orlando, FL, 1981) p. 294.Google Scholar
  3. 3.
    I. Y. Chang, Compos. Sci. Technol. 24 (1985) 61.CrossRefGoogle Scholar
  4. 4.
    J. A. Nairn and P. Zoller, in “Proceedings of the 5th International Conference on Composite Materials”, San Diego, 1985, edited by W. C. Harrigan Jr, J. Strife and A. K. Dhingra (TMS-AIME, Warrendale, PA, 1985) p. 931.Google Scholar
  5. 5.
    W. J. Lee, B. K. Fukai, J. C. Seferis and I. Y. Chang, Soc. Plast. Eng. Inc. Technical Papers XXXIII (1987) 942.Google Scholar
  6. 6.
    I. Y. Chang and J. K. Lees, J. Thermoplastic Compos. Mater. 1 (1988) 277.CrossRefGoogle Scholar
  7. 7.
    A. Miyase, S. S. Wang, A. W. L. Chew and P. H. Geil, J. Comp. Mat. 27 (1993) 908.CrossRefGoogle Scholar
  8. 8.
    R. Barton Jr, Bull Am. Phys. Soc. 32 (1987) 701.Google Scholar
  9. 9.
    W. J. Lee, B. K. Fukai, J. C. Seferis and I. Y. Chang, Composites 19 (1988) 473.CrossRefGoogle Scholar
  10. 10.
    A. R. Wedgewood, K. B. Su and J. A. Nairn, SAMPE J. 24 (1) (1988) 41.Google Scholar
  11. 11.
    D. C. Lin and P. H. Geil, ONR-URI Composites Program, National Center for Composite Materials Research at University of Illinois, Urbana, June 1991, Technical Report 91-06.Google Scholar
  12. 12.
    D. C. Dean, A. Miyase and P. H. Geil, ibid. Technical Report 91-07.Google Scholar
  13. 13.
    L. S. Li and P. H. Geil, Polymer 32 (1991) 2.CrossRefGoogle Scholar
  14. 14.
    H. D. Wagner, A. H. Gilbert, C. Migliaresi and G. Marom, J. Mater. Sci. 27 (1992) 4175.CrossRefGoogle Scholar
  15. 15.
    S. D. Incardona, C. Migliaresi, H. D. Wagner, A. H. Gilbert and G. Marom, Compos. Sci. Technol. 47 (1993) 43.CrossRefGoogle Scholar
  16. 16.
    S. D. Incardona, R. Di Maggio, L. Fambri, C. Migliaresi and G. Marom, J. Mater. Sci. 28 (1993) 4983.CrossRefGoogle Scholar
  17. 17.
    J. D. Huffman and J. J. Weeks, J. Res. Nat. Bur. Stand. Sect. A 66 (1962) 13.CrossRefGoogle Scholar
  18. 18.
    K. Konnecke, Angew. Makr. Chem. 198 (1992) 15.CrossRefGoogle Scholar
  19. 19.
    J. N. Leckenby, D. C. Karget, W. J. Sichina and P. S. Gill, in “Proceedings of 3rd International Conference on Carbon Fibres”, London, October 1989 (Conference Booklet Publishers, PRI, London, 1989) p. 11(1).Google Scholar
  20. 20.
    D. J. Blundell and B. N. Osborn, Polymer 24 (1983) 953.CrossRefGoogle Scholar
  21. 21.
    D. C. Bassett, R. H. Olley and I. A. M. Alraheil, ibid. 29 (1988) 1745.CrossRefGoogle Scholar
  22. 22.
    A. Lustiger, F. S. Uralil and G. M. Newaz, Polym. Compos. 11 (1) (1990) 65.CrossRefGoogle Scholar
  23. 23.
    C. Mancarella and E. Martuscelli, Polymer 18 (1977) 1240.CrossRefGoogle Scholar
  24. 24.
    S. Mazzullo, G. Paganetto and A. Celli, Progr. Coll. Polym. Sci. 87 (1992) 32.CrossRefGoogle Scholar
  25. 25.
    E. J. Clark and J. D. Huffman, Macromolecules 17 (1984) 876.Google Scholar
  26. 26.
    J. D. Hoffman, G. T. Davis and J. I. Lauritzen, Jr, in “Treatise on solid state chemistry”, Vol. 3, edited by N. B. Hannay (Plenum Press, New York, 1976) Ch. 7.Google Scholar
  27. 27.
    C. M. Tung and P. J. Dynes, J. Appl. Polym. Sci. 33 (1987) 505.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. Fambri
    • 1
  • S. D. Incardona
    • 1
  • C. Migliaresi
    • 1
  • G. Marom
    • 2
  1. 1.Department of Materials EngineeringUniversità degli Studi di TrentoMesianoItaly
  2. 2.Casali Institute of Applied Chemistry, Graduate School of Applied Science and TechnologyThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations