Advertisement

Journal of Materials Science

, Volume 29, Issue 18, pp 4663–4677 | Cite as

The influence of fibre aspect ratio on the deformation of discontinuous fibre-reinforced composites

  • I. M. Robinson
  • J. M. Robinson
Review

Abstract

The fundamental theory for discontinuous fibre reinforcement of plastics is reviewed and compared to experimental data obtained from a range of single-fibre composite tests. Given that the theory provides an adequate description of fibre reinforcement, predictions for the critical fibre length in model composites based on glass fibres embedded in a range of matrices with different volume fractions have been made. The model has been used to predict the modulus for unidirectional discontinuous glass fibre-reinforced composites with a high volume fraction of glass fibres with different mean fibre lengths, diameters and matrices. From this study the concept of a critical aspect ratio, required for effective composite performance, has been defined generally for this type of material. The critical aspect ratio has been found to depend upon fibre diameter, matrix modulus and fibre volume fraction. A brief review of this class of material in the scientific literature has been made in the areas of deformation and failure. To aid the developments in the theory behind discontinuous fibre composites, a series of deformation experiments have been performed on model discontinuous glass fibre/nylon 6,6 compounds produced by extrusion and pultrusion compound technology. The materials were processed using multilive feed technology, to produce effective representations of unidirectional discontinuous glass-fibre composites. Given that the model compounds contained variations in fibre lengths and diameters, the deformation experiments performed were a fundamental test of the theory presented for the critical fibre aspect ratio and the results of theory and experiment have been compared. Based on the predictions of the model and the experimental work, conclusions are offered on the type of fibre that should be used for discontinuous fibre-reinforced composites.

Keywords

Glass Fibre Fibre Length Fibre Volume High Volume Fraction Fibre Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eur. Plastics News (March) (1993) 21.Google Scholar
  2. 2.
    H. L. Cox, Br. J. Appl. Phys. 3 (1952) 72.CrossRefGoogle Scholar
  3. 3.
    G. S. Hollister and C. Thomas, “Fibre Reinforced Materials” (Elsevier, 1966).Google Scholar
  4. 4.
    T. S. Chow, J. Mater. Sci. 15 (1980) 1873.CrossRefGoogle Scholar
  5. 5.
    E. I. M. Asloun, M. Nardin and J. Schulz, ibid. 24 (1989) 1835.CrossRefGoogle Scholar
  6. 6.
    C. Galiotis, Compos. Sci. Technol. 42 (1991) 125.CrossRefGoogle Scholar
  7. 7.
    C. Galiotis, R. J. Young, P. H. J. Yeung and D. N. Batchelder J. Mater. Sci. 19 (1984) 3640.CrossRefGoogle Scholar
  8. 8.
    L. Monette, M. P. Anderson, S. Ling and G. S. Grist, ibid. 27 (1992) 4393.CrossRefGoogle Scholar
  9. 9.
    B. W. Rosen, AIAA J. 2 (1964) 1985.CrossRefGoogle Scholar
  10. 10.
    Y. Termonia, J. Mater. Sci. 22 (1987) 504.CrossRefGoogle Scholar
  11. 11.
    M. R. Piggott, Polym. Compos. 8 (1987) 291.CrossRefGoogle Scholar
  12. 12.
    Idem, M. R. Piggott, Compos. Sci. Technol. 42 (1991) 57.CrossRefGoogle Scholar
  13. 13.
    J. C. Figueroa, T. E. Carney, L. S. Schadler and C. Laird, ibid. 42 (1991) 77.CrossRefGoogle Scholar
  14. 14.
    M. Narkis, E. J. H. Chen and R. B. Pipes, Polym. Compos. 9 (1988) 245.CrossRefGoogle Scholar
  15. 15.
    N. Melanitis and C. Galiotis, Proc. R. Soc. Lond. A 440 (1993) 379.CrossRefGoogle Scholar
  16. 16.
    R. J. Young, in “Polymer surfaces and interfaces II”, edited by W. J. Feast, H. S. Munro and R. W. Richards (Wiley, 1993) Ch. 6.Google Scholar
  17. 17.
    R. J. Day and R. J. Young, J. Micros. 169 (1993) 151.CrossRefGoogle Scholar
  18. 18.
    C. Galiotis, R. J. Young, P. H. J. Yeung and D. N. Batchelder, J. Mater. Sci. 19 (1984) 3640.CrossRefGoogle Scholar
  19. 19.
    I. M. Robinson, P. H. J. Yeung, R. J. Young and C. Galiotis, ibid. 21 (1986) 3642.CrossRefGoogle Scholar
  20. 20.
    I. M. Robinson, R. J. Young, C. Galiotis and D. N. Batchelder, ibid. 22 (1987) 3642.CrossRefGoogle Scholar
  21. 21.
    I. M. Robinson, C. Galiotis, D. N. Batchelder and R. J. Young, ibid. 26 (1991) 2293.CrossRefGoogle Scholar
  22. 22.
    H. Jakankhani and C. Galiotis, J. Compos. Mater. 25 (1991) 609.CrossRefGoogle Scholar
  23. 23.
    M. C. Andrews and R. J. Young, J. Raman Spec. Google Scholar
  24. 24.
    M. C. Andrews, R. J. Day, X. Hu and R. J. Young, J. Mater. Sci. Lett 11 (1992) 1344.CrossRefGoogle Scholar
  25. 25.
    N. Melanitis, C. Galiotis, P. L. Tetlow and C. K. L. Davies, J. Compos. Mater. 26 (1992) 574.CrossRefGoogle Scholar
  26. 26.
    N. Melanitis, C. Galiotis, P. L. Tetlow and C. K. L. Davies J. Mater. Sci. 28 (1993) 1648.CrossRefGoogle Scholar
  27. 27.
    W. D. Bascom and R. M. Jensen, J. Adhesion 19 (1986) 219.CrossRefGoogle Scholar
  28. 28.
    A. T. Dibenedetto, Compos. Sci. Technol. 42 (1991) 103.CrossRefGoogle Scholar
  29. 29.
    N. Laws and R. MćLaughlin, J. Mech. Phys. Solids 27 (1979) 1.CrossRefGoogle Scholar
  30. 30.
    C. R. Gore, G. Cuff and D. A. Cianelli, Mater. Eng. 103 (1986) 47.Google Scholar
  31. 31.
    M. Davies, R. S. Bailey and D. R. Moore, Composites 20 (1989) 453.CrossRefGoogle Scholar
  32. 32.
    D. R. Moore, I. M. Robinsonand B. Slater,in “FRC 90” (Institute of Mechanical Engineers, London, 1990) p. 203.Google Scholar
  33. 33.
    R. S. Bailey and H. Kraft, Int. Polym. Proc. 2 (1987) 94.CrossRefGoogle Scholar
  34. 34.
    R. S. Bailey, D. R. Moore, I. M. Robinson and P. M. Rutter, Sci. Eng. Compos. Mater. 2 (1993) 171.CrossRefGoogle Scholar
  35. 35.
    M. J. Carling and J. G. Willams, Polym. Compos. 11 (1990) 307.CrossRefGoogle Scholar
  36. 36.
    F. Ramsteiner and R. Theysohn, Compos. Sci. Technol. 24 (1985) 231.CrossRefGoogle Scholar
  37. 37.
    Idem, Composites 10 (1979) 111.CrossRefGoogle Scholar
  38. 38.
    F. Ramstiner, ibid. 12 (1981) 65.CrossRefGoogle Scholar
  39. 39.
    N. Sato, T. Kurauchi, S. Sato and O. Kamigaito, J. Compos. Mater. 22 (1988) 850.CrossRefGoogle Scholar
  40. 40.
    M. Akay and D. Barkley, J. Mater. Sci. 26 (1991) 2731.CrossRefGoogle Scholar
  41. 41.
    N. Sato, T. Kurauchi, S. Sato and O. Kamigaito, J. Mater. Sci. 26 (1991) 3891.CrossRefGoogle Scholar
  42. 42.
    S. Turner, Br. Plast. (April) (1972) p. 7.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • I. M. Robinson
    • 1
  • J. M. Robinson
    • 1
  1. 1.ICI MaterialsWilton Research CentreWilton, MiddlesbroughUK

Personalised recommendations