Journal of Materials Science

, Volume 31, Issue 16, pp 4297–4302 | Cite as

A TEM study of the interfaces and matrices of SiC-coated carbon fibre/aluminium composites made by the K2ZrF6 process

  • X. Chen
  • G. Zhen
  • Z. Shen


Carbon fibre-reinforced aluminium composites were pressurelessly cast by using K2ZrF6 as the wetting promotion agent. Transmission electron microscopy (TEM) and energy dispersed analysis of X-rays, (EDAX) were used. The results showed that interfacial reactions were very active after K2ZrF6 treatment. This was caused by the diffusion and reaction of zirconium in the surface of carbon fibres or in the SiC coating. Silicon alloying of aluminium could suppress the interfacial reactions by decreasing the activity of zirconium and changing intermetallic Al3Zr to Zr3Al4Si5, and building up the phase equilibrium between SiC, aluminium and silicon. The requested silicon content was higher than the equilibrium content of Al-Si-SiC system to suppress the SiC/Al interfacial reaction. A perfect interface was achieved in SiC-coated carbon fibre Al-12 wt% Si composite.


Silicon Transmission Electron Microscopy Zirconium Phase Equilibrium Carbon Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Amateau, J. Compos. Mater. 10 (1976) 279.CrossRefGoogle Scholar
  2. 2.
    K. Honjo and A. Shindo, Yogyo Kyokai Shi 94 (1986) 172.CrossRefGoogle Scholar
  3. 3.
    L. Aggour, E. Fitzer, E. Ignotowitz and M. Sahebkar, Carbon 12 (1974) 358.CrossRefGoogle Scholar
  4. 4.
    A. Martensen, J. A. Corine and M. C. Flemings, J. Metals 2 (1988) 13.Google Scholar
  5. 5.
    M. K. Shorshorov, T. A. Chernyshova and L. I. Kobeleva, in “Progress in Science and Engineering of Composites”, edited by T. Hayashi, K. Kawata and S. Umekawa, ICCM IV, Tokyo (Japanese Society for composite Materials, 1982) p. 1273.Google Scholar
  6. 6.
    J. P. Rocher, J. M. Quenisset and R. Naslain, J. Mater. Sci. Lett. 4 (1985) 1527.CrossRefGoogle Scholar
  7. 7.
    Idem., US Pat. 4659 593, 21 April 1987.Google Scholar
  8. 8.
    Idem, J. Mater. Sci. 24 (1989) 2697.CrossRefGoogle Scholar
  9. 9.
    S. Schamm, J. P. Rocher and R. Naslain, in “Development in Science and Technology of Composite Materials” (ECCM-3), European Association for Composite Materials, ed. by A. R. Bunsell P. Lamicq. A. Massiah, pp. 157–63.Google Scholar
  10. 10.
    X. Chen, G. Zheng, Z. Shen and H. Du, Acta Metall. Sinica 28B (1992) 180.Google Scholar
  11. 11.
    Q. Li, J. Mcgusar, L. T. Masur and J. A. Cornic, J. Mater. Sci. Eng. A117 (1989) 199.CrossRefGoogle Scholar
  12. 12.
    T. Iseki, T. Kameda and T. Maruyama, J. Mater. Sci. 19 (1984) 1692.CrossRefGoogle Scholar
  13. 13.
    H. Lu, U. Medaleno, T. Shinoda, Y. Mishima and T. Suzuki, ibid. 25 (1990) 4247.CrossRefGoogle Scholar
  14. 14.
    X. Chen, Z. Shen and G. Zheng, Acta Metall. Sinica 29B (1993) 377 (in Chinese).Google Scholar
  15. 15.
    H. L. Marcous, AD-A 127590 (1976).Google Scholar
  16. 16.
    J. C. Viala, P. Fortier and J. Bouix, J. Mater. Sci. 25 (1990) 1842.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • X. Chen
    • 1
  • G. Zhen
    • 2
  • Z. Shen
    • 2
  1. 1.Zhejiang Research Institute of MetallurgyHangzhouPeople’s Republic of China
  2. 2.Institute of Metal ResearchAcademia SinicaShenyangPeople’s Republic of China

Personalised recommendations