Advertisement

Journal of Materials Science

, Volume 30, Issue 3, pp 834–836 | Cite as

Temperature-dependent Young's modulus of an SiCw/Al2O3 composite

  • M. Weller
  • H. Ledbetter
Papers

Abstract

Using a computer-controlled resonant-bar apparatus at frequencies near 5 kHz, we determined the temperature-dependent (86–732 K) Young's modulus of a ceramic-ceramic composite with a 0.30 volume fraction of SiC whiskers in an Al2O3 matrix. Using a megahertz-frequency pulse-echo method, it was verified that the composite shows little anisotropy (variation of the elastic properties with direction). Using a scattered-plane-wave ensemble-average method, we modelled the ambient-temperature elastic constants and found good model-observation agreement. To model the behaviour of the Young's modulus with temperature, Varshni's three-parameter relationship for Einstein-oscillator monocrystals was used. Again, good model-observation agreement was found. The mechanical-loss spectrum showed no remarkable features, indicating good whisker-matrix interface properties up to 732 K.

Keywords

Polymer Anisotropy Al2O3 Elastic Property Elastic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Homeny, W. Vaughn and M. Ferber, Amer. Ceram. Soc. Bull. 67 (1987) 333.Google Scholar
  2. 2.
    K. Tolpygo, Sov. Phys. Solid State 2 (1961) 2367.Google Scholar
  3. 3.
    H. Ledbetter, N. Frederick and M. Austin, J. Appl. Phys. 51 (1980) 305.CrossRefGoogle Scholar
  4. 4.
    M. Weller and E. Török, J. Phys. (Paris) C 48 (1987) 377.Google Scholar
  5. 5.
    H. Ledbetter, Cryogenics 20 (1980) 637.CrossRefGoogle Scholar
  6. 6.
    H. Ledbetter and S. Datta, J. Acoust. Soc. Amer. 79 (1986) 239.CrossRefGoogle Scholar
  7. 7.
    J. Gieske and G. Barsch, Phys. Status Solidi 29 (1967) 121.CrossRefGoogle Scholar
  8. 8.
    G. Arlt and G. Schodder, J. Acoust. Soc. Amer. 37 (1965) 384.CrossRefGoogle Scholar
  9. 9.
    V. Lyubimskii, Sov. Phys. Solid State 18 (1976) 1814.Google Scholar
  10. 10.
    Y. Varshni, Phys. Rev.B 2 (1970) 3952.CrossRefGoogle Scholar
  11. 11.
    O. Anderson, Phys. Acoust. B III (1965) 43.CrossRefGoogle Scholar
  12. 12.
    S. Kim, unpublished research, NIST, Boulder (1990).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Weller
    • 1
  • H. Ledbetter
    • 2
  1. 1.Max-Planck-Institut für Metallforschung, Institut für WerkstoffwissenschaftStuttgartGermany
  2. 2.Materials Science and Engineering LaboratoryNational Institute of Standards and TechnologyBoulderUSA

Personalised recommendations