Journal of Materials Science

, Volume 30, Issue 3, pp 800–808 | Cite as

Characterization of vapour plume species and deposition residues resulting from pulsed laser ablation of a graphite/epoxy composite

  • R. E. Roybal
  • C. J. Miglionico
  • C. Stein
  • L. E. Murr
  • K. A. Lincoln


A modified time-of-flight mass spectrometer fitted with a special collection stage for carbon-coated transmission electron microscope specimen grids is used to monitor laser-pulse ablation products from graphite/epoxy composite targets. Scanning electron microscopy observations show ablation damage to consist of matrix pyrolysis, fibre fracture and spallation of fragments which include elemental hydrogen, carbon epoxide and acetylene groups. Transmission electron microscope examination of specimen grids showed a variety of crystals and polycrystalline hexagonal graphites having a wide range of shapes including spheres and faceted polyhedra and platelets, textured flake structures, and microrosettes. These observations lend some credibility to a model for laser-shock and pyrolysis effects which create molecular plume fragments and deposition fragments of hexagonal graphite.


Pyrolysis Transmission Electron Microscope Examination Transmission Electron Microscope Specimen Composite Target Acetylene Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Glass and A. H. Guenther (eds), “Damage in Laser Glass”, ASTM Special Technical Publication 469 (ASTM, Philadelphia, PA, 1969).Google Scholar
  2. 2.
    Idem, “Laser Induced Damage in Optical Materials”, NBS Special Publication 462 (ASTM Special Technical Publication 622) (US Government Printing Office, Washington DC., 1976).Google Scholar
  3. 3.
    I. Rubin and M. S. Chou, “Repetitively Pulsed Laser Effects Phenomenology Program”, AFWL-TR-88-112 (Kirtland AFB NH, 1987).Google Scholar
  4. 4.
    A. H. Clauer, J. H. Holbrook and B. P. Fairand, in “Shock Waves and High-Strain-Rate Phenomena in Metals”, edited by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981) p. 675.CrossRefGoogle Scholar
  5. 5.
    S. S. Batsanov, “Physical Chemistry of Shock-Induced Compression: A New Scientific Trend Comes into Being” (Izvestia, Siberian Academy of Sciences Chemical Series, 1967) p. 676.Google Scholar
  6. 6.
    S. S. Batsanov, Russ. Chem. Rev. 55(4) (1986) 297.CrossRefGoogle Scholar
  7. 7.
    K. A. Lincoln and R. D. Bechtel, “A Fast Data Acquisition System for the Study of Transient Events by High Repetition Rate Time-of-Flight Mass Spectrometer”, NASA Technical Memorandum 88374 (1986).Google Scholar
  8. 8.
    K. A. Lincoln, AIAA J., 21(8) (1983) 1204.CrossRefGoogle Scholar
  9. 9.
    K. A. Lincoln and A. M. Covington, Int. J. Mass Spectr. Ion. Proc. 16 (1975) 191.CrossRefGoogle Scholar
  10. 10.
    S. Iijima, J. Phys. Chem. 91 (1987) 3466.CrossRefGoogle Scholar
  11. 11.
    W. Hermann, J. Appl. Phys. 40 (1969) 2490.CrossRefGoogle Scholar
  12. 12.
    T. Sekine, in “Shock-Wave and High-Strain Rate Phenomena in Materials”, edited by M. A. Meyers, L. E. Murr and K. P. Staudhammer (Marcel Dekker, New York, 1992) p. 311.Google Scholar
  13. 13.
    F. C. Anderson, J. Appl. Phys. 35 (1964) 64.CrossRefGoogle Scholar
  14. 14.
    P. H. Lindenmeyer, in “Frontiers in Materials Science”, edited by L. E. Murr and C. Stein (Marcel Dekker, New York, 1976) p. 219.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. E. Roybal
    • 1
  • C. J. Miglionico
    • 1
  • C. Stein
    • 1
  • L. E. Murr
    • 2
  • K. A. Lincoln
    • 3
  1. 1.Space Environmental Interaction Branch, Phillips LaboratoryPL/VTSIAlbuquerqueUSA
  2. 2.Department of Metallurgical and Materials EngineeringThe University of Texas at El PasoEl PasoUSA
  3. 3.Eloret InstituteNASA Ames Research CenterMoffett FieldUSA

Personalised recommendations