Advertisement

Journal of Materials Science

, Volume 30, Issue 3, pp 744–748 | Cite as

Thermoelectric properties of fine-grained sintered (Bi2Te3)25-(Sb2Te3)75 p-type solid solution

  • A. A. Joraide
Papers

Abstract

P-type semiconductor alloy compacts of the composition (Bi2Te3)25-(Sb2Te3)75 with grain size (L) in the range 30 > L > 20 μm, 20 > L > 15 μm, 15 > L > 10 μm, 10 > L > 5 and L < 5 μm were prepared by cold press at a pressure of 77 × 107 Nm−2. The samples were sintered at 673 K. Measurements of the Seebeck coefficient, electrical resistivity and thermal conductivity were carried out. The experimental results show that the Seebeck coefficient increases, but not much from the single crystal. The electrical resistivity increases in particular for the size L < 5 μm with a reduction in grain size. The total thermal conductivity seriously decreases as grain size decreases. It is concluded that the figure of merit of the compacted alloy would be significantly improved through the use of fine-grained powders of size 30−10 μm.

Keywords

Grain Size Thermal Conductivity Solid Solution Electrical Resistivity Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Benson and C. E. Tracy, in Proceedings of the Fourth International Conference on Thermoelectric Energy Conversion, University of Texas, Arlington, March, 1982. (IEEE, No. 82ch1763-2, 1982) p. 11.Google Scholar
  2. 2.
    H. J. Goldsmid, A. R. Sheard and D. A. Wright, Br. J. Appl. Phys. 9 (1958) 365.CrossRefGoogle Scholar
  3. 3.
    Y. M. Yim and F. D. Rosi, Solid State Electronics 15 (1972) 1121.CrossRefGoogle Scholar
  4. 4.
    D. M. Rowe, Applied Energy 24 (1986) 139.CrossRefGoogle Scholar
  5. 5.
    D. J. Ryden, J. Phys. C: Solid State Phys. 4 (1971) 1193.CrossRefGoogle Scholar
  6. 6.
    D. M. Rowe and C. M. Bhandari, “Modern Thermoelectric” (Holt Rinehart and Winston, New York, 1983) p. 11.Google Scholar
  7. 7.
    C. M. Bhandari and D. M. Rowe, “Thermal conduction in Semiconductors” (Wiley Eastern, New Delhi, 1988) p. 1, 20.Google Scholar
  8. 8.
    D. M. Rowe, J. Appl. Phys. 7 (1974) 1843.Google Scholar
  9. 9.
    H. J. Goldsmid and A. W. Penn, Phys. Lett. 27A (1968) 523.CrossRefGoogle Scholar
  10. 10.
    Z. H. Dughaish, PhD thesis, University of Wales (1991).Google Scholar
  11. 11.
    A. A. Joraide, Arab Gulf Journal of Scientific Research August (1993).Google Scholar
  12. 12.
    M. A. Omar, “Elementary Solid State Physics” (Addison-Wesley, London, 1975) p. 79.Google Scholar
  13. 13.
    M. A. Issa, A. M. Hassib and F. A. Amin, “Development of Semiconductor Elements for Cooling and Power Generation” (King Abdulaziz City for Science and Technology, No 46, 1991).Google Scholar
  14. 14.
    F. D. Rosi, E. F. Hockings and N. E. Lindeablad, RCA Rev. 22 (1961) 82.Google Scholar
  15. 15.
    A. A. Joraide, J. Appl. Phys. 73 (1993) 7478.CrossRefGoogle Scholar
  16. 16.
    C. Wood, Rep. Prog. Phys. 51 (1988) 459.CrossRefGoogle Scholar
  17. 17.
    Y. M. Yim, H. J. Goldsmid and F. D. Rosi, J. Mat. Sci. 1 (1966) 52.CrossRefGoogle Scholar
  18. 18.
    D. M. Rowe, J. Phys. D. Appl. Phys. 8 (1975) 1092.CrossRefGoogle Scholar
  19. 19.
    H. R. Maddins and J. E. Parott, J. Phys. C: Solid State Phys. 9 (1976) 1263.CrossRefGoogle Scholar
  20. 20.
    A. S. Al-Ghaffari, M.Sc. thesis, Riyadh University (1987).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. A. Joraide
    • 1
  1. 1.King Abdulaziz Military AcademyRiyadhSaudi Arabia

Personalised recommendations