Advertisement

Journal of Materials Science

, Volume 30, Issue 3, pp 737–743 | Cite as

Thermal decomposition of the Pb, Al-hydrotalcite material

  • M. L. Valcheva-Traykova
  • N. Davidova
  • A. H. Weiss
Papers

Abstract

The transformation of methane into C2 hydrocarbons over thermally degraded Mg, Pb, Al-hydrotalcite material proceeds with the active participation of β-PbO. The conditions of pre-treatment leading β-PbO formation in the catalyst have been examined on the Pb, Al-hydrotalcite material as a model system. By use of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy and diffusereflectance spectroscopy techniques, it was found that the temperature interval 600–750 °C is optimal for β-PbO crystallization. On the basis of the present and previous results, the formation of all components of the catalytically active thermally degraded Mg, Pb, Al-hydrotalcite material, has been explained. During calcination of the Mg, Pb, Al-hydrotalcite material, the lead-containing components form β-PbO and γ-Al2O3 and the magnesium-containing components transform to a finely dispersed MgO-Al2O3 matrix.

Keywords

Polymer Spectroscopy Microscopy Electron Microscopy Scanning Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Asami, K. Hashimoto, K. Fujimoto and H.-O. Tominaga, in “Methane Conversion”, edited by D. M. Bibby (Elsevier Science, Amsterdam, The Netherlands, 1983) p. 403.Google Scholar
  2. 2.
    A. H. Weiss, J. Cook, R. Holmes, N. Davidova, P. Kovacheva and M. Traykova, in “Novel Materials in Heterogeneous Catalysis”, ACS Symposium Series 437, edited by L. L. Murrell (ACS, Washington, USA, 1990) Ch. 22, p. 243.Google Scholar
  3. 3.
    M. Valcheva-Traykova, N. Davidova and A. H. Weiss, J. Mater. Sci. 28 (1993) 2157.CrossRefGoogle Scholar
  4. 4.
    W. T. Rechle, Chem. Technol. 16 (1986) 58.Google Scholar
  5. 5.
    D. M. Roy, A. Roy and E. F. Osborn, Am. J. Sci. 251 (1953) 337.CrossRefGoogle Scholar
  6. 6.
    S. Asbring and L. Narrby Acta Crystallogr. B 26 (1970) 8.CrossRefGoogle Scholar
  7. 7.
    S. Chose, ibid. 17 (1964) 1051.CrossRefGoogle Scholar
  8. 8.
    I. Kostov, in “Mineralogia” (Nauka I Tehnika, Sofia, Bulgaria, 1957) p. 297.Google Scholar
  9. 9.
    G. E. Feklichev, in “Diagnosticheskie spectri Mineralov” (Nedra, Moscow, 1977).Google Scholar
  10. 10.
    N. Kachanov and L. I. Mirkin, “Rentgenostrukturnji Analiz-Parkticheskoe rukovodstwo” (MASHGIS, Moscow, 1960) p. 92.Google Scholar
  11. 11.
    I. M. Glistenko, “Osnovi nauchnikh issledovanij” (Visha Shkola, Moscow, 1983).Google Scholar
  12. 12.
    R. Allmann, Chimia 24 (1970) 99.Google Scholar
  13. 13.
    P. G. Rouxnet and H. F. Taylor ibid. 23 (1969) 480.Google Scholar
  14. 14.
    L. Kustov, V. Plashotnik, V. Borovkov and V. Kazanski, Kinet. katal. 23 (1982) 955.Google Scholar
  15. 15.
    V. Kazanski, ibid. 23 (1982) 1334.Google Scholar
  16. 16.
    L. Kustov, V. Plashotnik, V. Borovkov and V. Kazanski, ibid. 23 (1982) 1161.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. L. Valcheva-Traykova
    • 1
  • N. Davidova
    • 1
  • A. H. Weiss
    • 2
  1. 1.Institute of Kinetics and CatalysisBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Chemical EngineeringWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations