Advertisement

Journal of Materials Science

, Volume 30, Issue 3, pp 729–733 | Cite as

Photocatalytic degradation of heparin over titanium dioxide

  • A. Blazková
  • V. Brezová
  • Z. Soldánová
  • A. Staško
  • M. Soldán
  • M. Čeppan
Papers

Abstract

The photochemical degradation of the homogeneous oxygen-saturated buffered aqueous solutions of sodium heparin salt initiated by the irradiation with medium pressure mercury lamp was compared with the heterogeneous photocatalytic heparin degradation sensitized by titanium dioxide. The obtained results confirmed that UV irradiation of heparin homogeneous aqueous solutions caused negligible changes in the polysaccharidic structure only. The irradiation of heparin in oxygen-saturated physiological saline photosensitized by the TiO2 caused significant changes in the heparin macromolecule. The study of photocatalytic heparin degradation in buffered oxygen-saturated TiO2 suspensions (pH=5–9) ascertained a significant influence of pH on the degradation of heparin. The polymeric chain is predominantly cleaved in the acidic and neutral medium.

Keywords

TiO2 Mercury Heparin Macromolecule Polymeric Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Petitou, C. Coudert, M. Level, J.-C. Lormeau, M. Zuber, C. Simenel, J.-P. Fournier and J. Choay, Carbohydr. Res. 236 (1992) 107.CrossRefGoogle Scholar
  2. 2.
    D. L. Rabenstein, P. Bratt, T. D. Schierling, J. M. Robert and W. Guo, J. Am. Chem. Soc. 114 (1992) 3278.CrossRefGoogle Scholar
  3. 3.
    R. J. Linhardt, Proc. ACS Div. Polym. Mat.: Sci. Eng. 62 (1990) 488.Google Scholar
  4. 4.
    R. J. Linhardt, Chem. Ind. (1991) 45.Google Scholar
  5. 5.
    S. Coccheri, Haemostasis 20 (1990) 74.Google Scholar
  6. 6.
    E. A. Balazs, T. C. Laurent, A. F. Howe and L. Varga, Rad. Res. 11 (1959) 149.CrossRefGoogle Scholar
  7. 7.
    K. Nagasawa, H. Uchiyama, N. Sato and A. Hatano, Carbohydr. Res. 236 (1992) 165.CrossRefGoogle Scholar
  8. 8.
    J. R. Harbour, J. Tromp and M. L. Hair, Can. J. Chem. 63 (1985) 204.CrossRefGoogle Scholar
  9. 9.
    B. Ohtani, S. Adzuma, S. Nishimoto and T. Kagiya, Polym. Degrad. Stab. 35 (1992) 53.CrossRefGoogle Scholar
  10. 10.
    B. Casu, in “Heparin. Chemical and biological properties, clinical applications”, edited by D. A. Lane and U. Lindahl (Edward Arnold, London (1989)) pp. 25–49.Google Scholar
  11. 11.
    V. Brezová, M. Čeppan, M. Veselý and L. Lapčík, Chem. Papers 45 (1991) 233.Google Scholar
  12. 12.
    G. Blix, Acta Chem. Scand. 2 (1948) 467.CrossRefGoogle Scholar
  13. 13.
    M. Čakrt, “Analytical chemistry” (Alfa, Bratislava, 1989).Google Scholar
  14. 14.
    I. Melcer, A. Blažej and L. Šutý, Analytical chemistry of wood (Alfa, Bratislava, 1976).Google Scholar
  15. 15.
    B. Ranby and J. F. Rabek, Photodegradation, photooxidation and photostabilization of polymers. Principles and applications. (Wiley, New York, 1975).Google Scholar
  16. 16.
    V. Brezová, A. Staško and L. Lapčík Jr., J. Photochem. Photobiol. A: Chem. 59 (1991) 115.CrossRefGoogle Scholar
  17. 17.
    H. Kubota, Y. Ogiwara and K. Matsuzaki, Polym. J. 8 (1976) 557.CrossRefGoogle Scholar
  18. 18.
    D. Grant, W. F. Long, C. F. Moffat and F. B. Williamson, Biochem. J. 261 (1989) 1035.CrossRefGoogle Scholar
  19. 19.
    S. E. Lasker and S. S. Stivala, Arch. Biochem. Biophys. 115 (1966) 360.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. Blazková
    • 1
  • V. Brezová
    • 1
  • Z. Soldánová
    • 1
  • A. Staško
    • 1
  • M. Soldán
    • 1
  • M. Čeppan
    • 1
  1. 1.Faculty of Chemical TechnologySlovak Technical UniversityBratislavaSlovakia

Personalised recommendations