Journal of Materials Science

, Volume 30, Issue 3, pp 693–700 | Cite as

Multiparticle clusters and carbon superstructure in martensite

  • L. Dabrowski


On the basis of experimentally verified concentration expansion tensor values, stress induced two-particle C-C potentials have been calculated in harmonic approximation. A calculation method has been developed and expressions derived for the evaluation of multiparticle interaction potentials and cluster population. The temperature range of the applicability of the method has been estimated. On the basis of this method it has been demonstrated that in thermodynamic quasi-equilibrium, carbon atoms exist in clustered form. The clusters most frequently appearing at 300 K are of four- and five-particle type. The cluster configurations have been determined and the binding energy per atom has been estimated as about 0.5 eV. At 78 K, there exist practically only five-particle linear clusters situated along the tetragonal C axis. It has been postulated that a superstructure may exist in martensite with a binding energy per atom nearly four times higher than in the case of the above clusters. The presence of superstructure is associated with the formation of five-atom seeds in the form of pyramids having their basis in the (001) plane. The formation of seeds with different topology from the other clusters is associated with overcoming a potential barrier. The postulated form of ordering at low temperatures should exhibit high thermal stability with respect to ordering changes and order-disorder phase transitions, as well as to carbide formation.


Carbide Phase Transition Thermal Stability Martensite Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Sumin, M. G. Zemlianov, L. M. Kaputkina, P. P. Parshin, C. D. Prokoshkin and A. I. Tchoklo, Fiz. Met. Metalloved. (USSR) 11 (1992) 122.Google Scholar
  2. 2.
    I. R. Entin, V. A. Somenkov and S. S. Shilstein, Dokl. Akad. Nauk USSR 206 (1972) 1096.Google Scholar
  3. 3.
    R. A. Johnson, Acta Metall. 13 (1965) 1259.CrossRefGoogle Scholar
  4. 4.
    J. M. R. Genin, Metall. Trans. A 18A (1987) 1371.CrossRefGoogle Scholar
  5. 5.
    G. V. Kurdiumov and A. G. Khachaturyan, Acta Metall 23 (1975) 1077.CrossRefGoogle Scholar
  6. 6.
    M. S. Blanter and A. G. Khachaturyan, Metall Trans. A 9A (1978) 753.CrossRefGoogle Scholar
  7. 7.
    L. Dabrowski, J. Mater. Sci. 25 (1990) 2722.CrossRefGoogle Scholar
  8. 8.
    L. Dabrowski, J. Magn. Magn. Mater. 81 (1989) 173.CrossRefGoogle Scholar
  9. 9.
    A. G. Khachaturyan, Fiz. Tverd. Tela (USSR) 9 (1967) 2861.Google Scholar
  10. 10.
    H. E. Cook and D. de, Fontaine, Acta Metall. 17 (1969) 915.CrossRefGoogle Scholar
  11. 11.
    Idem, ibid. 19 (1971) 607.CrossRefGoogle Scholar
  12. 12.
    D. W. Hoffman, ibid. 18 (1970) 819.CrossRefGoogle Scholar
  13. 13.
    A. G. Khachaturyan, “Theory of Structural Transformation in Solids” (Wiley, New York, 1983), and also in “Nauka”, (Moscow, 1974) p. 322.Google Scholar
  14. 14.
    V. J. Minkiewicz, G. Shirane and R. Nathans, Phys. Rev. 162 (1967) 528.CrossRefGoogle Scholar
  15. 15.
    B. N. Brockhouse, H. E. Abou-Helal and E. D. Hallman, Solid State Commun 5 (1967) 211.CrossRefGoogle Scholar
  16. 16.
    C. Van, Dijk and J. Bergsma, Neutron Inelastic Scattering 1 (1968) 233.Google Scholar
  17. 17.
    A. D. B. Woods, “Inelastic Scattering of Neutron in Solids and Liquids”, Vol. II (International Atomic Eng. Agency, Vienna, 1963) p. 3.Google Scholar
  18. 18.
    O. Antson, V. G. Gavrilyuk, V. A. Kudriashov, V. M. Nadutov, K. Peyuryu, Y. Petikaynen, A. Titta, V. A. Trudnov, K. Ullakko, V. A. Ulianov, P. Khiismyaki and Y. P. Thernenkov, Fiz. Met. Metalloved. (USSR) 10 (1990) 114.Google Scholar
  19. 19.
    M. Hayakawa and M. Tanigami, M. Oka, Met. Trans. A 16A (1985) 1745.CrossRefGoogle Scholar
  20. 20.
    L. Dabrowski, J. Suwalski, V. Christov, B. Sidzhimov and P. Małecki, Report IAE-2144/VIII Otwock-Swierk (1993).Google Scholar
  21. 21.
    J. A. Rayna and B. S. Chandrasekhler, Phys. Rev. 122 (1961) 1714.CrossRefGoogle Scholar
  22. 22.
    G. Horvitz and H. Callen, ibid. 124 (1961) 1757.CrossRefGoogle Scholar
  23. 23.
    D. A. Badalyan and A. G. Khachaturyan, Fiz. Tverd. Tela (USSR) 12 (1970) 439.Google Scholar
  24. 24.
    L. Dabrowski, Phys. Status Solidi 128B (1985) 371.CrossRefGoogle Scholar
  25. 25.
    J. W. Tucker, J. Appl. Phys. 69 (1991) 6164.CrossRefGoogle Scholar
  26. 26.
    W. Metzner, Phys. Rev. B 43 (1991) 8549.CrossRefGoogle Scholar
  27. 27.
    R. Kikuchi, Phys. Rev. 81 (1951) 988.CrossRefGoogle Scholar
  28. 28.
    Idem, J. Chem. Phys. 19 (1951) 1230.CrossRefGoogle Scholar
  29. 29.
    N. S. Golosov, L. E. Popov and L. Y. Pudan, J. Phys. Chem. Solids 34 (1973) 1149.CrossRefGoogle Scholar
  30. 30.
    Idem, ibid. 34 (1973) 1157.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • L. Dabrowski
    • 1
  1. 1.Institute of Atomic EnergyOtwock-SwierkPoland

Personalised recommendations