Advertisement

Journal of Materials Science

, Volume 30, Issue 3, pp 683–692 | Cite as

A new data reduction scheme for the fragmentation testing of polymer composites

  • T. Lacroix
  • R. Keunings
  • M. Desaeger
  • I. Verpoest
Papers

Abstract

A new reduction scheme of fragmentation data for the derivation of interfacial mechanical properties in polymer composites is proposed. The scheme is based on a theoretical model that accounts for elastic load transfer and friction at the interface, as well as for the statistical nature of fibre strength. Interface mechanical behaviour is characterized by two independent parameters, namely the interface bond strength and interface frictional resistance. Derived values of the two interface properties are computed, such that they yield the best possible agreement between experimental and theoretical results for the evolution of fibre fragment aspect ratio and debonding ratio as a function of applied strain. Results are reported for carbon fibres embedded in an epoxy matrix, with different levels of fibre surface treatment.

Keywords

Carbon Fibre Polymer Composite Reduction Scheme Load Transfer Applied Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Verpoest, M. Desaeger and R. Keunings, in “Controlled Interphases”, edited by H. Ishida (Elsevier, Amsterdam, 1990) pp. 653–666.CrossRefGoogle Scholar
  2. 2.
    C. Galiotis, R. J. Young, P. H. J. Yeung and D. N. Batchelder, J. Mater. Sci. 19 (1984) 3640.CrossRefGoogle Scholar
  3. 3.
    I. M. Robinson, R. J. Young, C. Galiotis and D. N. Batchelder, ibid. 22 (1987) 3642.CrossRefGoogle Scholar
  4. 4.
    EI. M. Asloun, M. Nardin and J. Schultz, ibid. 24 (1989) 1835.CrossRefGoogle Scholar
  5. 5.
    J-P. Favre and D. Jacques, ibid. 25 (1990) 1373.CrossRefGoogle Scholar
  6. 6.
    A. Kelly and G. J. Davies, Metall. Rev. 10 (1965) 20.Google Scholar
  7. 7.
    J-P. Favre, P. Sigety and D. Jacques, J. Mater. Sci. 26 (1991) 189.CrossRefGoogle Scholar
  8. 8.
    M. R. Piggott, “Load Bearing Fibre Composites” (Pergamon, Oxford, 1980) pp. 83–89.CrossRefGoogle Scholar
  9. 9.
    T. Lacroix, B. Tilmans, R. Keunings, M. Desaeger and I. Verpoest, Comp. Sci. Technol. 43 (1992) 379.CrossRefGoogle Scholar
  10. 10.
    T. Lacroix, PhD thesis, Université Catholique de Louvain, Belgium, in preparation.Google Scholar
  11. 11.
    H. L. Cox, Brit. J. Appl. Phys. 3 (1952) 72.CrossRefGoogle Scholar
  12. 12.
    M. R. Piggott, J. Mater. Sci. 13 (1978) 1709.CrossRefGoogle Scholar
  13. 13.
    W. Weibull, J. Appl. Mech. 18 (1951) 293.Google Scholar
  14. 14.
    S. Van Der, Zwaag, J. Test. Eval. 17 (1989) 292.CrossRefGoogle Scholar
  15. 15.
    M. Desaeger, PhD Thesis, Katholieke Universiteit Leuven, Belgium (1993).Google Scholar
  16. 16.
    M. Desaeger, I. Verpoest, H. T. Chen, P. Denison, F. Jones, T. Lacroix and R. Keunings, in preparation (1994).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • T. Lacroix
    • 1
  • R. Keunings
    • 1
  • M. Desaeger
    • 2
  • I. Verpoest
    • 2
  1. 1.Centre for Systems Engineering and Applied Mechanics, Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Metallurgy and MaterialsKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations