Journal of Materials Science

, Volume 30, Issue 3, pp 661–677 | Cite as

Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content

  • R. Bodet
  • X. Bourrat
  • J. Lamon
  • R. Naslain


The high-temperature mechanical behaviour and microstructural evolution of experimental SiC fibres (Hi-Nicalon) with a low oxygen content (<0.5 wt%) have been examined up to 1600 °C. Comparisons have been made with a commercial Si-C-O fibre (Nicalon Ceramic Grade). Their initial microstructure consists of β-SiC crystallites averaging 5–10 nm in diameter, with important amounts of graphitic carbon into wrinkled sheet structures of very small sizes between the SiC grains. The fall in strength above 800 °C in air is related to fibre surface degradation involving free carbon. Crystallization of SiC and carbon further develops in both fibres subject to either creep or heat treatment at ∼1300 °C and above for long periods. The fibres are characterized by steady state creep and greater creep resistance (one order of magnitude) compared to the commercial Nicalon fibre. The experimental fibre has been found to creep above 1280 °C under low applied stresses (0.15 GPa) in air. Significant deformations (up to 14%) have been observed, both in air and argon above 1400 °C. The stress exponents and the apparent activation energies for creep have been found to fall in the range 2–3, both in air and argon, and in the range 200–300 kJ mol−1 in argon and 340–420 kJ mol−1 in air. The dewrinkling of carbon layer packets into a position more nearly aligned with the tensile axis, their sliding, and the collapse of pores have been proposed as the mechanisms which control the fibre creep behaviour.


Apparent Activation Energy Creep Behaviour Stress Exponent Steady State Creep Tensile Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Yajima, J. Hayashi and M. Omori, Chem. Lett. 9 (1975) 931.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 10 (1976) 551.CrossRefGoogle Scholar
  3. 3.
    R. W. Rice, Ceram. Bull. 62 (1983) 889.Google Scholar
  4. 4.
    R. R. Wills, R. A. Markle and S. P. Mukherjee, ibid. 62 (1983) 904.Google Scholar
  5. 5.
    C. L. Schilling Jr, J. P. Wesson and T. C. Williams, ibid. 62 (1983) 912.Google Scholar
  6. 6.
    B. E. Walker, ibid. 62 (1983) 916.Google Scholar
  7. 7.
    L. Porte and A. Sartre, J. Mater. Sci. 24 (1989) 271.CrossRefGoogle Scholar
  8. 8.
    C. Laffon, A. M. Flank, P. Lagarde, M. Laridjani, R. Hagege, P. Olry, J. Cotteret, J. Dixmier, L. Miquel, H. Hommel and A. P. Legrand, ibid. 24 (1989) 1503.CrossRefGoogle Scholar
  9. 9.
    R. Bodet, J. Lamon, N. Jia and R. E. Tressler, J. Am. Ceram. Soc., in press.Google Scholar
  10. 10.
    M. H. Jaskowiak and J. A. Dicarlo, ibid. 72 (1989) 192.CrossRefGoogle Scholar
  11. 11.
    R. Bodet, N. Jia and R. E. Tressler, J. Eur. Ceram. Soc., in press.Google Scholar
  12. 12.
    Idem, ibid.Google Scholar
  13. 13.
    G. Simon and A. R. Bunsell, J. Mater. Sci. 19 (1984) 3658.CrossRefGoogle Scholar
  14. 14.
    N. Jia, R. Bodet and R. E. Tressler, J. Am. Ceram. Soc., in press.Google Scholar
  15. 15.
    K. Okamura, Composites 18 (1987) 107.CrossRefGoogle Scholar
  16. 16.
    G. Chollon, M. Czerniak, R. Pailler, X. Bourrat and R. Naslain, in “Proceedings of the International Conference on High Temperature Ceramic Matrix Composites”, edited by R. Naslain, J. Lamon and D. Doumeingt, ECCM-6, 20–24 September 1993, Bordeaux, France (Woodhead, Cambridge, 1993) pp. 109–116.Google Scholar
  17. 17.
    J. F. Villeneuve, D. Mocaer, R. Pailler, R. Naslain and P. Olry, J. Mater. Sci. 28 (1993) 1227.CrossRefGoogle Scholar
  18. 18.
    J. F. Villeneuve and R. Naslain, Compos. Sci. Technol., in press.Google Scholar
  19. 19.
    D. J. Pysher, PhD thesis, Pennsylvania State University (1992).Google Scholar
  20. 20.
    N. Jia, PhD thesis, Pennysylvania State University (1993).Google Scholar
  21. 21.
    D. J. Pysher, K. C. Goretta, R. S. Hodder Jr and R. E. Tressler, J. Am. Ceram. Soc. 72 (1989) 284.CrossRefGoogle Scholar
  22. 22.
    M. Takeda, Y. Imai, H. Ichikawa, T. Ishikawa, N. Kasai, T. Suguchi and K. Okamura, Ceram. Eng. Sci. Proc. 13 (1993) 209.CrossRefGoogle Scholar
  23. 23.
    E. Gugel, in “Ceramics in Advanced Energy Technologies”, Proceedings of the European Colloqium, Pette, Netherlands, 20–22 September 1982, Edited by H. Kröckel, M. Merz and O. Van der Biest (Reidel, Dordrecht, 1984) pp. 23–50.Google Scholar
  24. 24.
    W. R. Cannon and T. G. Langdon, J. Mater. Sci. 18 (1983) 1.CrossRefGoogle Scholar
  25. 25.
    Y. Hasegawa, Compos. Sci. Technol. 37 (1990) 37.CrossRefGoogle Scholar
  26. 26.
    J. A. Dicarlo, J. Mater. Sci. 21 (1986) 217.CrossRefGoogle Scholar
  27. 27.
    W. V. Kotlensky, Carbon 4 (1966) 209.CrossRefGoogle Scholar
  28. 28.
    W. V. Kotlensky and H. E. Martens, in “Proceedings of the Fifth Conference on Carbon”, Vol. 2, 1963, Pennsylvania State University, USA (Pergamon, New York, 1963) pp. 625–38.Google Scholar
  29. 29.
    L. A. Feldman, Aerospace Report No. ATR-88 (3728-02)-2 (The Aerospace Corporation, El Segundo, CA, 1988).Google Scholar
  30. 30.
    L. A. Feldman, in “Proceedings of the 16th Conference on Carbon”, San Diego, (American Carbon Society, 1983) pp. 499–500.Google Scholar
  31. 31.
    K. Kogure, J. G. Lavin and G. Sines, “Extended Abstract of the 21st Conference on Carbon”, Buffalo (American Carbon Society, 1993) pp. 16–17.Google Scholar
  32. 32.
    J. V. Ross and R. M. Bustin, Nature 343 (1990) 58.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. Bodet
    • 1
  • X. Bourrat
    • 1
  • J. Lamon
    • 1
  • R. Naslain
    • 1
  1. 1.Laboratoire des Composites Thermostructuraux (UMR 47 CNRS-SEP-UB1)Domaine UniversitairePessacFrance

Personalised recommendations