Advertisement

Journal of Materials Science

, Volume 30, Issue 3, pp 643–654 | Cite as

Cyclic fatigue in monolithic alumina: mechanisms for crack advance promoted by frictional wear of grain bridges

  • C. J. Gilbert
  • R. N. Petrany
  • R. O. Ritchie
  • R. H. Dauskardt
  • R. W. Steinbrech
Papers

Abstract

The microstructural basis of cyclic fatigue-crack propagation in monolithic alumina has been investigated experimentally and theoretically. A true cyclic fatigue effect has been verified, distinct from environmentally assisted slow crack growth (static fatigue). Microstructures with smaller grain sizes were found to promote faster crack-growth rates; growth rates were also increased at higher load ratios (i.e. ratio of minimum to maximum applied loads). Using in situ crack-path analysis performed on a tensile loading stage mounted in the scanning electron microscope, grain bridging was observed to be the primary source of toughening by crack-tip shielding. In fact, crack advance under cyclic fatigue appeared to result from a decrease in the shielding capacity of these bridges commensurate with oscillatory loading. It is proposed that the primary source of this degradation is frictional wear at the boundaries of the bridging grains, consistent with recently proposed bridging/degradation models, and as seen via fractographic and in situ analyses; specifically, load versus crack-openingdisplacement hysteresis loops can be measured and related to the irreversible energy losses corresponding to this phenomenon.

Keywords

Load Ratio Static Fatigue Slow Crack Growth Cyclic Fatigue Crack Advance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Wiederhorn, B. J. Hockey and D. E. Roberts, Philos. Mag. 28 (1973) 783.CrossRefGoogle Scholar
  2. 2.
    L. S. Williams, Trans. Br. Ceram. Soc. 55 (5) (1956) 287.Google Scholar
  3. 3.
    B.K. Sarkar and T. G. T. Glinn, ibid. 69 (5) (1970) 199.Google Scholar
  4. 4.
    D. A. Krohn and D. P. H. Hasselman, J. Am. Ceram. Soc. 55 (1972) 208.CrossRefGoogle Scholar
  5. 5.
    F. Guiu, J. Mater. Sci. Lett. 13 (1978) 1357.CrossRefGoogle Scholar
  6. 6.
    E. B. Shand, Am. Ceram. Soc. Bull. 38 (1959) 653.Google Scholar
  7. 7.
    A. G. Evans and E. R. Fuller, Metall. Trans. 5 (1974) 27.Google Scholar
  8. 8.
    R. O. Ritchie and R. H. Dauskardt, J. Ceram. Soc. Jpn 99 (1991) 1047.CrossRefGoogle Scholar
  9. 9.
    S. Horibe and R. Hirahara, Acta Metall. Mater. 39 (1991) 1309.CrossRefGoogle Scholar
  10. 10.
    T. Hoshide, T. Ohara and T. Yamada, Int. J. Fract. 37 (1988) 47.CrossRefGoogle Scholar
  11. 11.
    F. Guiu, M. J. Reece and D. A. J. Vaughan, J. Mater. Sci. 26 (1991) 3275.CrossRefGoogle Scholar
  12. 12.
    H. Kishimoto, JSME Int. J. 34 (1991) 393.Google Scholar
  13. 13.
    S. Suresh, J. Hard Mater. 2 (1991) 29.Google Scholar
  14. 14.
    F. Guiu, M. Li and M. Reece, J. Am. Ceram. Soc. 75 (1992) 2976.CrossRefGoogle Scholar
  15. 15.
    S. Lathabai, Y. Mai and B. Lawn, ibid. 72 (1989) 1760.CrossRefGoogle Scholar
  16. 16.
    T. Kawakubo and K. Komeya, ibid. 70 (1987) 400.CrossRefGoogle Scholar
  17. 17.
    R. Knehans and R. Steinbrech, J. Mater. Sci. Lett. 1 (1982) 327.CrossRefGoogle Scholar
  18. 18.
    P. Becher, J. Am. Ceram. Soc. 74 (1991) 255.CrossRefGoogle Scholar
  19. 19.
    S. J. Bennison and B. R. Lawn, Acta Metall. Mater. 37 (1989) 2659.CrossRefGoogle Scholar
  20. 20.
    A. G. Evans and K. T. Faber, J. Am. Ceram. Soc. 67 (1984) 255.CrossRefGoogle Scholar
  21. 21.
    R. M. McMeeking and A. G. Evans, ibid. 65 (1982) 242.CrossRefGoogle Scholar
  22. 22.
    J. Rödel, J. Eur. Ceram. Soc. 9 (1992) 323.CrossRefGoogle Scholar
  23. 23.
    R. H. Dauskardt, Acta Metall. Mater. 41 (1993) 2765.CrossRefGoogle Scholar
  24. 24.
    S. Lathabai, J. Rödel and B. Lawn, J. Am. Ceram. Soc. 74 (1991) 1360.CrossRefGoogle Scholar
  25. 25.
    P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y-W. Mai and B. J. Hockey, ibid. 70 (1987) 279.Google Scholar
  26. 26.
    J. Rödel, J. Kelly and B. Lawn, ibid. 73 (1990) 3313.CrossRefGoogle Scholar
  27. 27.
    G. Vekinis, M. F. Ashby and P. W. R. Beaumont, Acta Metall. Mater. 38 (1990) 1151.CrossRefGoogle Scholar
  28. 28.
    H. E. Lutz, X. Z. Hu and M. V. Swain, J Eur. Ceram. Soc. 9 (1992) 133.CrossRefGoogle Scholar
  29. 29.
    Y. Maniette, M. Inagaki and M. Sakai, ibid. 7 (1991) 255.CrossRefGoogle Scholar
  30. 30.
    D. C. Salmon and D. W. Hoeppner, in “Second Symposium on Cyclic Deformation, Fracture, and Nondestructive Evaluation of Advanced Materials,” Miami, November 1992, edited by M. R. Mitchell and O. Buck, STP 1184 (American Society for Testing and Materials, Philadelphia, PA, 1994).Google Scholar
  31. 31.
    C.-W. Li, D.-J. Lee and S.-C. Lui, J. Am. Ceram. Soc. 75 (1992) 1777.CrossRefGoogle Scholar
  32. 32.
    A. G. Evans, Mater. Sci. Eng. A143 (1991) 63.CrossRefGoogle Scholar
  33. 33.
    H. Cai, K. T. Faber and E. R. Fuller, Jr, J. Am. Ceram. Soc. 75 (1992) 3111.CrossRefGoogle Scholar
  34. 34.
    J. C. Hay and K. W. White, ibid. 76 (1993) 1849.CrossRefGoogle Scholar
  35. 35.
    T. Tanaka, N. Okabe and Y. Ishimaru, J. Soc. Mater. Sci. Jpn 38 (1989) 137.CrossRefGoogle Scholar
  36. 36.
    D. Rouby and P. Reynaud, Compos. Sci. Technol. 48 (1993) 109.CrossRefGoogle Scholar
  37. 37.
    R. H. Dauskardt and R. O. Ritchie, Closed Loop 17 (1989) 7.Google Scholar
  38. 38.
    R. O. Ritchie and W. Yu, in “Small Fatigue Cracks”, edited by R. O. Ritchie and J. Lankford (The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, Warrendale, PA, 1986) p. 167.Google Scholar
  39. 39.
    H. N. Ko, J. Mater. Sci. Lett. 5 (1986) 464.CrossRefGoogle Scholar
  40. 40.
    Idem, ibid. 8 (1989) 1438.CrossRefGoogle Scholar
  41. 41.
    P. C. Paris and F. Erdogan, J. Bas. Eng. Trans. ASME 85 (1963) 528.CrossRefGoogle Scholar
  42. 42.
    Y. W. Mai and B. R. Lawn, J. Am. Ceram. Soc. 70 (1987) 289.CrossRefGoogle Scholar
  43. 43.
    A. G. Evans and R. M. McMeeking, Acta Metall. Mater. 34 (12) (1986) 2435.CrossRefGoogle Scholar
  44. 44.
    T. E. Fischer, M. P. Anderson, S. Jahanmir and R. Salher, in “Wear of Materials 1987”, Vol. 1, edited by K. C. Ludema (Asme, New York, 1987) p. 257.Google Scholar
  45. 45.
    N. Wallbridge, D. Dowson and E. W. Roberts, in “Wear of Materials 1983”, edited by K. C. Ludema (ASME, New York, 1983) p. 202.Google Scholar
  46. 46.
    R. H. VanStone, Mater. Sci. Eng. A103 (1988) 49.CrossRefGoogle Scholar
  47. 47.
    B. N. Cox and D. B. Marshall, Acta Metall. 39 (1991) 579.CrossRefGoogle Scholar
  48. 48.
    H. Tada, P. C. Paris and G. R. Irwin, “The Stress Analysis of Cracks Handbook”, Part III (Paris Productions, St Louis, 1985).Google Scholar
  49. 49.
    W. Elber, Eng. Fract. Mech. 2 (1970) 37.CrossRefGoogle Scholar
  50. 50.
    S. Suresh and R. O. Ritchie, in “Fatigue Crack Growth Threshold Concepts”, edited by S. Suresh and D. L. Davidson (The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, Warrendale, PA, 1984) p. 227.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. J. Gilbert
    • 1
  • R. N. Petrany
    • 1
  • R. O. Ritchie
    • 1
  • R. H. Dauskardt
    • 2
  • R. W. Steinbrech
    • 3
  1. 1.Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  3. 3.Institute for Materials in Energy SystemsForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations